Indefinite integration
1. Integrate (sin(x))^(2)+ (cos(x))^(4)
2. Integrate (cosec(x))^(6)
3. Integrate (sec(x))^(6)
回答 (3)
To kimkay :
1.
第四行的 -∫cos(2x)dx 應為 -(1/2)∫cos(2x)dx 之誤。(1/2) 應乘入括號內每一項。
積分後得 -(1/4)(sin(2x)) 與後面的 +(1/4)(sin(2x)) 互相消去。
而且,x/2, x/4, x/8 應相加成 7x/8
最後,答案中 sin(4x)/36 應為 sin(4x)/32,因 8*4 = 32
因此最後答案應為 (7x/8) + sin(4x)/32 + C
1.
∫(sin(x))^(2)dx+∫(cos(x))^(4)dx
=∫(sin(x))^(2)dx+∫(cos(x)^2^2dx
=(1/2)∫(1-cos(2x) )dx+∫[(1/2)(1+cos(2x))]^2dx
=(1/2)∫1dx-∫cos(2x)dx+∫(1/4)(1+cos(2x)^2dx
=(1/2)x-∫cos(2x)dx+(1/4)∫(1+cos(2x)^2dx
=(x/2)-sin(2x)/2+(1/4)∫(1+2cos(2x)+cos^2(2x))dx
=x/2-sin(2x)/2+(1/4)∫1dx+(1/4)∫2cos(2x)dx+(1/4)∫cos^2(2x)dx
=x/2-sin(2x)/2+x/4+(1/2)∫cos(2x)dx+(1/4)∫cos^2(2x)dx
=x/2-sin(2x)/2+x/4+(1/4)(sin(2x))+(1/4)∫(1+cos(4x))/2dx
=x/2-sin(2x)/2+x/4+(1/4)(sin(2x))+(1/8)∫(1+cos(4x))dx
=x/2-sin(2x)/2+x/4+(1/4)(sin(2x))+(1/8)∫1dx+(1/8)∫cos(4x)dx
=x/2-sin(2x)/2+x/4+(1/4)(sin(2x))+x/8+(1/8)∫cos(4x)dx
=x/2-sin(2x)/2+x/4+(1/4)(sin(2x))+x/8+(1/8)(sin(4x)/4)+C
=x/2-sin(2x)/2+x/4+(1/4)(sin(2x))+x/8+sin(4x)/36+C
2.
cosec(x)我用csc(x)表之,而(cscx)^6則用csc^6(x)表之.
∫csc^6(x)dx
=∫[csc^2(x)]^2csc^2(x)dx
=∫(1+cot^2(x))^2d(-cot(x))
=-∫(1+2cot^2(x)+cot^4(x)d(cot(x))
=-[cot(x)+2cot^3(x)/3+cot^5(x)/5]+C
=-cot(x)-(2/3)cot^3(x)-(1/5)cot^5(x)+C
3.
∫(secx)^6dx
=∫[(secx)^2]^2(secx)^2dx
=∫(1+tan^2x)^2(secx)^2dx
=∫(1+tan^2x)^2d(tanx)
=∫(1+2tan^2x+tan^4x)d(tanx)
=tanx+(2/3)tan^3x+(1/5)tan^5x+C
唔明再問!
2012-09-11 16:57:11 補充:
是喔!!! 謝謝教導!!!
因為即時做加上有點亂所以.....哈哈
收錄日期: 2021-04-13 18:57:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120910000051KK00239
檢視 Wayback Machine 備份