高一數學 ,請幫忙.

2012-08-28 1:04 am
1.利用歸納法證明
1-1/2+1/3-1/4.........+1/2n-1-1/2n=1/(n+1)+1/(n+2)+....+1/2n
2.設n為正整數,試証1*n+2*(n-1)+3*(n-2)+......+(n-1)2+n*1=n*(n+1)*(n+2)/6

回答 (1)

2012-08-28 1:24 am
✔ 最佳答案
1.利用歸納法證明
1-1/2+1/3-1/4.........+1/(2n-1)-1/(2n)=1/(n+1)+1/(n+2)+....+1/(2n)
Sol
當n=1時
左=1-1/2=1/2
右=1*(1+1)=1/2
Son=1時為真
設n=k時為真即
1-1/2+1/3-1/4.........+1/(2k-1)-1/(2k)=1/(k+1)+1/(k+2)+....+1/(2k)
So
1-1/2+1/3-1/4.........+1/(2k-1)-1/(2k)+1/(2k+1)-1/(2k+2)
=1/(k+1)+1/(k+2)+....+1/(2k) +1/(2k+1)-1/(2k+2)
=2/(2k+2)+1/(k+2)+....+1/(2k) +1/(2k+1)-1/(2k+2)
=1/(k+2)+....+1/(2k) +1/(2k+1)+1/(2k+2)
Son=k+1時為真

2.設n為正整數,試証
1*n+2*(n-1)+3*(n-2)+......+(n-1)*2+n*1=n*(n+1)*(n+2)/6
Sol
當n=1時
左=1*1=1
右=1*(1+1)*(1+2)/6=1
Son=1時為真
設n=k時為真即
1*k+2*(k-1)+3*(k-2)+......+(k-1)*2+k*1=k*(k+1)(k+2)/6
So
1*(k+1)+2*k+3*(k-1)+......+(k-1)*3+k*2+(k+1)*1
=[1*k+2*(k-1)+3*(k-2)+......+(k-1)*2+k*1]
+[1*1+2*1+3*1+…+k*1+(k+1)*1]
= k*(k+1)(k+2)/6+(k+1)(k+2)/2
=[(k+1)(k+2)/6]*(k+3)
=(k+1)(k+2)(k+3)/6
So n=k+1時為真




收錄日期: 2021-04-30 16:57:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120827000016KK07097

檢視 Wayback Machine 備份