maths 恆等式 20點

2012-08-26 3:44 am
(1-3)化簡
1.cos(a)-cos(a)sin^2(a)

2.2sin^2(a)/tan^2(a)

3.sin(90-a)cos^2(a)+cos(a)sin^2(a)

計算(4-6)
4.tan30。tan60。

5.cos^2 72。 +cos^2 18。 sin90。

6.3-cos^2 72。-cos^2 18。

證明恆等式
7sin(a)tan(a)+cos(a)≡1/sin(90-0)

8.sin(a)/tan(90-0)-1/cos (a)≡-cos(a)

回答 (2)

2012-08-26 4:30 am
✔ 最佳答案
1.
cosθ - cosθsin²θ
= cosθ(1 - sin²θ)
= cosθcos²θ
= cos³θ


2.
2 sin²θ/tan²θ
= 2 sin²θ/(sin²θ/cos²θ)
= 2 sin²θ x (cos²θ/sin²θ)
= 2 cos²θ


3.
sin(90°-θ)cos²θ + cosθsin²θ
= cosθcos²θ + cosθsin²θ
= cosθ(cos²θ + sin²θ)
= cosθ


4.
tan30° tan60°
= tan30° tan(90°-30°)
= tan30° x (1/tan30°)
= 1


5.
cos²72° + cos²18°sin90°
= cos²(90°-18°) +cos²18° x 1
= sin²18° +cos²18°
= 1


6.
3 - cos²72° - cos²18°
= 3 - cos²(90°-18°) - cos²18°
= 3 - sin²18° - cos²18°
= 3 - (sin²18° + cos²18°)
= 3 - 1
= 2


7.
左式
= sinθtanθ + cosθ
= sinθ(sinθ/cosθ) + cosθ
= (sin²θ/cosθ) + (cos²θ/cosθ)
= (sin²θ + cos²θ)/cosθ
= 1/cosθ
= 1/sin(90°-θ)
= 右式


8.
左式
= sinθ/tan(90°-θ ) - 1/cosθ
= sinθtanθ - 1/cosθ
= sinθ(sinθ/cosθ) - 1/cosθ
= sin²θ/cosθ - 1/cosθ
= (sin²θ - 1)/cosθ
= [sin²θ - (sin²θ + cos²θ)]/cosθ
= -cos²θ/cosθ
= -cosθ
= 右式

2012-08-27 00:41:53 補充:
1 - sin²θ
= (sin²θ + cos²θ) - sin²θ
= sin²θ + cos²θ - sin²θ
= cos²θ

2012-08-27 00:45:02 補充:
2.
(2sin²θ/tan²θ) + cos²θ
= [2sin²θ/(sin²θ/cos²θ)] + cos²θ
= [2sin²θ x (cos²θ/sin²θ)] + cos²θ
= 2cos²θ + cos²θ
= 3cos²θ
參考: fooks, fooks, fooks
2012-08-26 4:32 am
1. cos a - cos a sin²a
=(cos a) (1-sin²a)
= (cos a) (cos²a)
= cos^3 a
2. 2sin²a/tan²a
=2sin²a/(sin²a/cos²a)
=(2sin²a)(cos²a/sin²a)
=2cos²a
3. sin(90-a) cos²a + cos a sin²a
= cos^3 a + cos a (1-cos²a)
=cos^3 a + cos a - cos^3 ²
=cos a


收錄日期: 2021-04-13 18:56:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120825000051KK00636

檢視 Wayback Machine 備份