F.4maths

2012-08-25 12:40 am
1.已知a和b是二次方程x^2-2x-5=0的根
(a)求下列各數式的值
(a+1)+(b+1)及(a+1)(b+1)
(b)建立一個以x為變數,並以a+1和b+1為根的二次方程
2.利用適當的方法解下列各二次方程(如有需要,答案以根式表示)
(a)-5(x-1)=(x-2)^2
(b)2x+-(x-3)(x+4)/5
3.若2x^2-8x+k=0的圖像沒有x軸截距,求k的最小整數值
4.給定二次方程(k-2)^2-10x+(2k+1)=0,求下列各情況中的k的可能值
(a)方程中兩根的和是5
(b)方程中兩根的積是-1
(c)y=(k-2)x^2-10x+(2k+1)的圖像與x軸接觸於一點
(5)已知一個以x為變數的二次方程的根是5和k,其中k是常數
(a)若兩根的和及積相等,求k的值
(b)由此,試以一般式表示該二次方程
(5)已知一個等腰三角形的周界為28cm,其中一條邊的長度為6cm,求其餘兩條邊的長
(6)L1:2x-3y+q=0和L2:px+15y-1=0兩條直線互相平行
(a)求p的值
(b)若L1的x軸截距與L2的y軸截距相等,求q的值
(7)L1:3x-4y+7=0和L2兩條直線互相平行,若L2通過(-1,-1),求L2的方程
(8)(a)已知L1:ax+6y+3=0和L2:2x-3y+8=0互相垂直,求a的值
(b)若P(b,b-8)位於L1上,求b的值
解x-10/3≥5x/2-12及2x-1/4-7x+4/6≤1/3

回答 (1)

2012-08-25 8:06 am
✔ 最佳答案
1.
(a)
兩根之和: a + b = 2
兩根之積: ab = -5

(a)
(a + 1) + (b + 1)
= (a + b) + 2
= 2 + 2
= 4

(a + 1)(b + 1)
= ab + (a + b) + 1
= -5 + 2 + 1
= -2
(b)
所求的方程: x² - 4x - 2 = 0


=====
2.
(a)
-5(x - 1) = (x - 2)²
-5x + 5 = x² - 4x + 4
x² + x - 1 = 0
x = (-1 + √5)/2 或 x = (-1 - √5)/2

(b)
2x = -(x - 3)(x + 4)/5
10x = -x² - x + 12
x² + 11x - 12 = 0
(x + 12)(x - 1) = 0
x = -12 或 x = 1


=====
3.
2x² - 8x + k = 0 無實根,判別式 Δ < 0
(-8)² - 4(2)(k) < 0
64 - 8k < 0
8k > 64
k > 8
k 的最小整數值 = 9


=====
4.
(a)
10/(k - 2) = 5
5k - 10 = 10
k = 4

(b)
(2k + 1)/(k - 2) = -1
2k + 1 = -k + 2
3k = 1
k = 1/3

(c)
(k - 2)x² - 10x + (2k + 1) = 0 只有一實根,判別式 Δ = 0
(-10)² - 4(k - 2)(2k + 1) = 0
100 - 4(2k² - 3k - 2) = 0
25 - 2k² + 3k + 2 = 0
2k² - 3k - 27 = 0
(2k - 9)(k + 3) = 0
k = 9/2 或 k = -3


=====
5.
(a)
5 + k = 5k
4k = 5
k = 5/4

(b)
所求方程:
x² - [5 + (5/4)]x + 5*(5/4) = 0
4x² - 25x + 25 = 0


=====
5
第二邊長 = 第三邊長
= (28 - 6)/2 cm
= 11 cm


=====
6.
(a)
-2/(-3) = -p/15
3p = -30
p = -10

(b)
-q/2 = 1/15
q = -2/15


=====
7
L2 的斜率 = -3/(-4) = 3/4

L2 的方程:
(y + 1) = (3/4)(x + 1)
4y + 4 = 3x + 3
3x - 4y - 1 = 0


=====
(8)
(a)
(-a/6) * [-2/(-3)] = -1
-a/9 = -1
a = 9

(b)
9b + 6(b - 8) + 3 = 0
9b + 6b - 48 + 3 = 0
15b - 45 = 0
b = 3


=====
(x-10)/3 ≥ (5x/2) - 12及 (2x-1)/4 - (7x+4)/6 ≤ 1/3
(x-10)/3 ≥ (5x-24)/2 及 3(2x-1)/12 - 2(7x+4)/12 ≤ 4/12
2(x-10) ≥ 3(5x-24) 及6x - 3 - 14x - 8 ≤ 42x- 20 ≥ 15x - 72 及 -8x ≤ 15
13x ≤ 52 及 8x ≥ -15
x ≤ 4 及 x ≥ -15/8

答案:-15/8 ≤ x ≤ 4
參考: 土扁


收錄日期: 2021-04-13 18:56:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120824000051KK00475

檢視 Wayback Machine 備份