x+x^1+x^2+x^3+.....+x^n = ??

2012-08-24 8:09 am
x+x^1+x^2+x^3+.....+x^n = ??

回答 (2)

2012-08-24 9:10 am
✔ 最佳答案
x + x^1 + x^2 + x^3 + ..... + x^n
= x + x + x^2 + x^3 + ..... + x^n
= x + (x + x^2 + x^3 + ..... + x^n)

x + x^2 + x^3 + ..... + x^n 為一等比數列的前 n 項和。
首項 a = x,公比 r = x,項數 = n
根據公式: 等比數列的前 n 項和 = a(r^n - 1)/(r - 1)

x + x^1 + x^2 + x^3 + ..... + x^n
= x + (x + x^2 + x^3 + ..... + x^n)
= x + [x(x^n - 1)/(x - 1)]
= [x(x - 1)/(x - 1)] + [x(x^n - 1)/(x - 1)]
= [x^2 - x + x^(n+1) - x] / (x - 1)
= [x^(n+1) + x^2 - 2x] / (x - 1)
參考: 土扁
2012-08-26 6:07 am
x+x^1+x^2+x^3+.....+x^n = ? --------(1)
1+1+x^1+x^2+.....+x^(n-1) = ?/x ---------(2)
(1) - (2) , x^n + x - 2 = ?(1-1/x)
x^(n+1)+x^2 - 2x = ?(x-1)
=> ? = [x^(n+1)+x^2 - 2x]/(x-1)

2012-08-25 22:08:35 補充:
assuming x =/=0, otherwise, reverse (1) and (2) for the left hand side by assuming 1+1+x^2 + x^2 + ... + x^(n-1) be "?"

2012-08-25 22:09:46 補充:
Furthermore, for 土扁,
in your case, u need to assume x =/= 1,
otherwise,
x + x^1 + x^2 + x^3 + ..... + x^n
= 1+1^1+1^2+1^3+...+1^n
= n+1


收錄日期: 2021-04-13 18:56:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120824000051KK00009

檢視 Wayback Machine 備份