✔ 最佳答案
x + x^1 + x^2 + x^3 + ..... + x^n
= x + x + x^2 + x^3 + ..... + x^n
= x + (x + x^2 + x^3 + ..... + x^n)
x + x^2 + x^3 + ..... + x^n 為一等比數列的前 n 項和。
首項 a = x,公比 r = x,項數 = n
根據公式: 等比數列的前 n 項和 = a(r^n - 1)/(r - 1)
x + x^1 + x^2 + x^3 + ..... + x^n
= x + (x + x^2 + x^3 + ..... + x^n)
= x + [x(x^n - 1)/(x - 1)]
= [x(x - 1)/(x - 1)] + [x(x^n - 1)/(x - 1)]
= [x^2 - x + x^(n+1) - x] / (x - 1)
= [x^(n+1) + x^2 - 2x] / (x - 1)