Let a_i , b_i , c_i , d_i (i=1,2,...,n) be 4 sets of real numbers. Show that
[∑(i=1,n) (a_i)^4] [∑(i=1,n) (b_i)^4] [∑(i=1,n) (c_i)^4] [∑(i=1,n) (d_i)^4]
>=[∑(i=1,n) (a_i) (b_i) (c_i) (d_i) ]^4
Hence deduce that
[∑(i=1,n) (a_i)^3] [∑(i=1,n) (b_i)^3] [∑(i=1,n) (c_i)^3]
>=[∑(i=1,n) (a_i) (b_i) (c_i) ]^3