Inequalities :::::::::::::::::

2012-08-22 10:32 pm
Let a_i , b_i , c_i , d_i (i=1,2,...,n) be 4 sets of real numbers. Show that

[∑(i=1,n) (a_i)^4] [∑(i=1,n) (b_i)^4] [∑(i=1,n) (c_i)^4] [∑(i=1,n) (d_i)^4]
>=[∑(i=1,n) (a_i) (b_i) (c_i) (d_i) ]^4

Hence deduce that

[∑(i=1,n) (a_i)^3] [∑(i=1,n) (b_i)^3] [∑(i=1,n) (c_i)^3]
>=[∑(i=1,n) (a_i) (b_i) (c_i) ]^3

回答 (1)

2012-08-23 12:33 am
✔ 最佳答案
By Cauchy–Schwarz inequality twice ,

( ∑(i=1,n) (ai)⁴* ∑(i=1,n) (bi)⁴) * ( ∑(i=1,n) (ci)⁴* ∑(i=1,n) (di)⁴)

≥ ( ∑(i=1,n) (ai bi)² )² * ( ∑(i=1,n) (ci di)² )²
= ( ∑(i=1,n) (ai bi)² * ∑(i=1,n) (ci di)² )²

≥ ( ( ∑(i=1,n) ai bi ci di )² )²
= ( ∑(i=1,n) ai bi ci di )⁴


Put ai = a i ³ˡ ⁴, bi = bi ³ˡ ⁴, ci = ci ³ˡ ⁴, di = (ai bi ci )¹ˡ ⁴ :

∑(i=1,n) (ai³ˡ ⁴)⁴∑(i=1,n) (bi³ˡ ⁴)⁴ ∑(i=1,n) (ci³ˡ ⁴)⁴∑(i=1,n) ((ai bi ci )¹ˡ ⁴)⁴
≥ ( ∑(i=1,n) (ai bi ci)³ˡ ⁴(ai bi ci )¹ˡ ⁴)⁴



∑(i=1,n) ai³ ∑(i=1,n) bi³ ∑(i=1,n) ci³ ∑(i=1,n) ai bi ci ≥ ( ∑(i=1,n) ai bi ci )⁴



∑(i=1,n) ai³ ∑(i=1,n) bi³ ∑(i=1,n) ci³ ≥ ( ∑(i=1,n) ai bi ci )³


收錄日期: 2021-04-21 22:26:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120822000051KK00389

檢視 Wayback Machine 備份