find the domain and range
find the domain and range of
g(x) =1/ 1-√x-2
i dont understand the point of what is a domain and range?? please help!!!
回答 (2)
參考: I hope the solution can help you^^”
Simple ideas of domain and range
Domain of a real function y=f(x) is the set of real values of x for which y is well-defined,
i.e. y can be calculated.
Range of a real function y=f(x) is the set of values of y corresponding to the values of x in the domain.
A method to find domain and range of y=f(x):
Make y the subject, i.e. y=f(x), the set of values of x for which y is well-defined
is the domain.
Make x the subject if possible, i.e. x=h(y), the set of values of y for which x is
well-defined is the range
Solution:
Let y=g(x). Then y =1/ [1-√(x-2)].
As denominator cannot be zero and square root of negative number is unreal,
y is well-defined if 1-√(x-2)≠0 and (x-2)≥0
∴x≠3 and x≥2
2≤x<3 or x>3
Domain is 2≤x<3 or x>3.
Make x the subject:
y=1/ [1-√(x-2)]
y[1-√(x-2)]=1
y-y√(x-2)=1
y-1=y√(x-2)
x-2=(y-1)²/y²
x=(y-1)²/y²+2
x is well-defined if y≠0.
Range is x≠0. (Either y≠0 or x≠0 means all non-zero numbers)
收錄日期: 2021-04-16 15:19:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120821000051KK00375
檢視 Wayback Machine 備份