大學入學試題兩條(餘式定理)

2012-08-19 8:07 pm
1.若以2x^2-3x-2除多項式f(x)與g(x),分別得餘式2x+3與4x-1,則以2x+1除f(x)-g(x)所得的餘式為?
2.f(x)為一個四次多項式,其常數項為0,將其除以x-1,x+1,x-2,x+2均餘4,則f(x)=?

回答 (2)

2012-08-19 8:28 pm
✔ 最佳答案
1 f(x) = (2x^2 - 3x - 2)Q(x) + 2x + 3

g(x) = (2x^2 - 3x - 2)T(x) + 4x - 1

f(x) - g(x)

= (2x^2 - 3x - 2)[Q(x) - T(x)] - 2x + 4

= (2x + 1)(x - 2)[Q(x) - T(x)] - (2x + 1) + 5

因此餘式為 5

2 f(x) = ax^4 + bx^3 + cx^2 + dx

f(1) = a + b + c + d = 4

f(-1) = a - b + c - d = 4

f(2) = 16a + 8b + 4c + 2d = 4

f(-2) = 16a - 8b + 4c - 2d = 4

因此a + c = 4, b + d = 0

4a + c = 1, 4b + d = 0

即a = -1, c = 3, b = d = 0

f(x) = -x^4 + 3x^2
2012-08-19 9:30 pm
Q2.
可採用因式定理。依題意,f(x)-4均被x-1,x+1,x-2,x+2整除。


收錄日期: 2021-04-26 19:17:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120819000051KK00205

檢視 Wayback Machine 備份