二次函數的值域及極值

2012-08-16 7:41 pm
求以下各二次函數的值域及極值:
1. f(x) = x² + 3x + 5
2. f(x) = x² + 5x + 3
3. f(x) = 2x² – 3x – 6 (x ≥ -1)
4. f(x) = 3x² + 7x + 3 (-3 ≤ x ≤ -2 或 -1 ≤ x ≤ 0)

回答 (1)

2012-08-16 8:40 pm
✔ 最佳答案
求以下各二次函數的值域及極值:
1. f(x) = x^2+3x+5
Sol
x^2+3x+5
=(x^2+3x+9/4)-9/4+5
=(x+3/2)^2+11/4
(x+3/2)^2>=0
(x+3/2)^2+11/4>=11/4
f(x)>=11/4

2. f(x) = x^2+5x+3
Sol
x^2+5x+3
=(x^2+5x+25/4)-25/4+3
=(x+5/2)^2-13/4
(x+5/2)^2>=0
(x+5/2)^2-13/4>=-13/4
f(x)>=-13/4

3. f(x) = 2x^2-3x-6 (x >=-1)
Sol
2x^2-3x-6
=2(x^2-3x/2)-6
=2(x^2-3x/2+9/16)-9/8-6
=2(x-3/4)^2-57/8
x>=-1
x-3/4>=-7/4
(x-3/4)^2>=0
2(x-3/4)^2>=0
2(x-3/4)^2-57/8>=-57/8
f(x)>=-57/8

4. f(x) = 3x^2+7x+3 (-3<= x<=-2 或 -1<=x<=0)
Sol
3x^2+7x+3
=3(x^2+7x/3)+3
=3[x^2+7x/3+(7/6)^2]-3*49/36+3
=3(x+7/6)^2-39/36
=3(x+7/6)^2-13/12
-3<=x<=-2
-3+7/6<=x+7/6<=-2+7/6
-11/6<=x+7/6<=-5/6
25/36<=(x+7/6)^2<=121/36
25/12<=3(x+7/6)^2<=121/12
1<=3(x+7/6)^2-13/12<=9
1<=f(x)<=9………………….(1)
-1<=x<=0
1/6<=x+7/6<=7/6
1/36<=(x+7/6)^2<=49/36
1/12<=3(x+7/6)^2<=49/12
-1<=3(x+7/6)^2-13/12<=3
-1<=f(x)<=3………….…(2)
綜合(1)(2)
-1<=f(x)<=9




收錄日期: 2021-04-13 18:54:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120816000051KK00219

檢視 Wayback Machine 備份