f.4 math

2012-08-10 7:12 am
想問題數:
it is given that sinB/sinA=cos(A+B),
proof that tan(A+B)=2tanA

please help me to solve this thx so much^^

回答 (1)

2012-08-10 9:50 am
✔ 最佳答案
By given ,
sinB / sinA = cos(A+B)
sinB / sinA = cosA cosB - sinA sinB
tanB / sinA = cosA - sinA tanB
tanB = sinA cosA - sin²A tanB
tanB (1 + sin²A) = sinA cosA
tanB = sinA cosA / (1 + sin²A) ... (*)
∴ tan(A+B)
= (tanA + tanB) / (1 - tanA tanB) , By (*) :
= (tanA + sinA cosA / (1 + sin²A)) / (1 - tanA sinA cosA / (1 + sin²A))
= (tanA (1 + sin²A) + sinA cosA) / (1 + sin²A - tanA sinA cosA)
= tanA (1 + sin²A) + sinA cosA
= tanA + tanA sin²A + sinA cosA
= tanA + tanA (1 - cos²A) + sinA cosA
= tanA + tanA - sinA cosA + sinA cosA
= 2tanA


收錄日期: 2021-04-21 22:25:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120809000051KK01154

檢視 Wayback Machine 備份