MQ37 --- Determinant

2012-08-06 5:04 am
MQ37 --- DeterminantDifficulty: 15%Factorize-|1--1--1-|Factorize-|a²-b²-c²|.Factorize-|a³-b³-c³|

回答 (2)

2012-08-06 6:32 am
✔ 最佳答案
|  1   1   1|
FACTORIZE |a^2 b^2 c^2|
          |a^3 b^3 c^3|
Sol
|  1   1   1|
|a^2 b^2 c^2|
|a^3 b^3 c^3|
=(b^2c^3-b^3c^2)-(a^2c^3-a^3c^2)+(a^2b^3-a^3b^2)
=(b^2c^3-a^2c^3)-(b^3c^2-a^3c^2)+(a^2b^3-a^3b^2)
=c^3(b^2-a^2)-c^2(b^3-a^3)+a^2b^2(b-a)
=(b-a)[c^3(b+a)-c^2(b^2+ab+a^2)+a^2b^2]
=(b-a)(bc^3+ac^3-b^2c^2-abc^2-a^2c^2+a^2b^2)
=(b-a)[(bc^3-abc^2)+(ac^3-a^2c^2)+(a^2b^2-b^2c^2)]
=(b-a)[bc^2(c-a)+ac^2(c-a)+b^2(a^2-c^2)]
=(b-a)(c-a)[bc^2+ac^2-b^2(a+c)]
=(b-a)(c-a)[(bc^2-b^2c)+(ac^2-ab^2)]
=(b-a)(c-a)[bc(c-b)+a(c^2-b^2)]
=(b-a)(c-a)(c-b)[bc+a(c+b)]
=(b-a)(c-a)(c-b)(ab+bc+ac)


2012-08-07 9:20 pm
col 3 - col 1 and then col 2 - col 1 to make the first element of columns 2 and 3 zero first


收錄日期: 2021-04-13 18:54:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120805000051KK00667

檢視 Wayback Machine 備份