✔ 最佳答案
若 for all a in A 存在 b in A such that aRb,
則可推出 aRa.
但 R 即使滿足 symmetric 及 transitive, 並不
保證 for all a in A 存在 b in A such that aRb,
因此不保證 for all a in A, aRa.
2012-08-04 19:53:32 補充:
Wiki:
http://en.wikipedia.org/wiki/Binary_relation
In mathematics, a binary relation on a set A is a collection of ordered pairs of elements of A. In other words, it is a subset of the Cartesian product A^2 = A × A. More generally, a binary relation between two sets A and B is a subset of A × B.
2012-08-04 19:53:43 補充:
若要說 "binary relation" 需要什麼條件是上列說明未列出的, 可能是
"nonempty" 吧? 因為如果 R 是 empty, 那就沒意思了.
不過, 確切的定義我想還是查教本比較保險.
2012-08-06 14:52:00 補充:
舉個實例確實有助於了解:
設 A={1,2,3} (如 TimC 所設).
設 R={(1,2),(2,1),(1,3),(3,1)}.
則 R 滿足 symmetric 但不滿足 transitive 及 reflexive.
設 R={(1,2),(2,3),(1,3)}.
則 R 滿足 transitive 但不滿足 symmetric 及 reflexive.
設 R={(1,1),(2,2),(3,3),(1,2),(2,3)}.
則 R 滿足 reflexive, 但不滿足 symmetric 及 transitive.
設 R={(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)}
則 R 滿足 reflexive 及 symmetric, 但不滿足 transitive.
設 R={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}
則 R 滿足 reflexive 及 transitive, 但不滿足 symmetric.
設 R={(1,2),(2,1),(1,1),(2,2)}
則 R 滿足 symmeitric 及 transitive 但不滿足reflexive.
因此, equivalence relation 中要求的三個條件缺一不可.
例如 R={(1,2),(2,1),(1,1),(2,2),(3,3)} 同時滿足三個條件,
它是一個 equivalence relation. 它把 A 分割成 {1,2} 及 {3}
兩個等價班(equivalent classes)..