✔ 最佳答案
(1)
(xy - 1)² + (x + y)(xy + 1) + 5xy
= [(xy + 1) - 2]² + (x + y)(xy + 1) + 5xy
= (xy + 1)² - 4(xy + 1) + 4 + (x + y)(xy + 1) + 5xy
= (xy + 1)² + (x + y)(xy + 1) + xy
= (xy + 1 + x)(xy + 1 + y)
(2)
(x²)² + 5x²y² +9(y²)²
= [(x²)² + 6x²y² +9(y²)²] - x²y²
= (x² + 3y²)² - (xy)²
= (x² + 3y² + xy)(x² + 3y² - xy)
(3)
a³b³ + a²b² - 2
= (a³b³ - 1) + (a²b² - 1)
= (ab - 1)(a²b² + ab + 1) + (ab - 1)(ab + 1)
= (ab - 1)[(a²b² + ab + 1) + (ab + 1)]
= (ab - 1)(a²b² + 2ab + 2)
(4)
x(x²-1) - y(y²-1) + xy(x-y)
= x³ - x - y³ + y + xy(x - y)
= (x³ - y³) - (x - y) + xy(x - y)
= (x - y)(x² + xy + y²) - (x - y) + xy(x - y)
= (x - y)[(x² + 2xy + y²) - 1]
= (x - y)(x + y + 1)(x + y - 1)
(5)
若題目為 (x² - y²)² - 8(x² + y² -2) 之誤,則解法如下:
(x² - y²)² - 8(x² + y² -2)
= (x² - y²)² - 8(x² - y²) - 16y² + 16
= [(x² - y²)² - 8(x² - y²) + 16] - 16y²
= [(x² - y²) - 4]² - (4y)²
= (x² - y² - 4 + 4y)(x² - y² - 4 - 4y)
= [x² - (y - 2)²] [x² - (y + 2)²]
= (x + y - 2)(x - y + 2)(x + y + 2)(x - y - 2)
(6)
x³ + 5x² + 9x + 6
= (x³ + 2x²) + (3x² + 6x) + (3x + 6)
= x²(x + 2) + 3x(x + 2) + 3(x + 2)
= (x + 2)(x² + 3x + 3)
(7)
4(x²)² - 13x² + 1 = 0
[4(x²)² - 4x² + 1] - 9x² = 0
(2x² - 1)² - (3x)² = 0
(2x² + 3x - 1)(2x² - 3x - 1) = 0
2x² + 3x - 1 = 0 或 2x² - 3x - 1 = 0
x = (-3+√17)/4 或 x = (-3-√17)/4 或 x = (3+√17)/4 或 x = (3-√17)/4
8.
x² - 5x + 2√(x²-5x+3) = 12
[√(x² - 5x + 3)]² + 2√(x²-5x+3) - 15 = 0
[√(x² - 5x + 3) + 5][√(x² - 5x + 3) - 3] = 0
√(x² - 5x + 3) = - 5(捨去) 或 √(x² - 5x + 3) = 3
x² - 5x + 3 = 9
x² - 5x - 6 = 0
(x - 6)(x + 1) = 0
x = 6 或 x = -1
(9)
(√3 - 1)x² - 4x + (3 + √3) = 0
x = {4 ± √[(-4)² - 4(√3 - 1)(3 + √3)]} / 2(√3 - 1)
x = [2 ± √(4 - 2√3)] / (√3 - 1)
x = [2 ± (√3 - 1)] / (√3 - 1)
x = (√3 + 1)/(√3 - 1) 或 x = (3 - √3)/(√3 - 1)
x = 2 + √3 或 x = √3