集合 - 証明

2012-08-01 11:24 pm
証明:A1∪A2∪A3...∪An = ( A1 - A2 )∪...∪(An - A1)∪(A1∩A2∩...∩An).

在這道題中我聯想了(A-B)∪(B-A)=(A∪B) - (A ∩ B ).
想進行推廣至(A1 - A2) ∪( A2 - A3 )... (An - A1) = ( A1∪A2...∪An ) - (A1∩A2∩...∩An). 不知道此式子是否成立, 求指導.

回答 (2)

2012-08-05 8:57 pm
✔ 最佳答案
將要利用以下性質:
(1) X∪Y=(X-Y)∪Y
(2)∩(k=1→n)(XUYk)=XU[∩(k=1→n)Yk]



A1∪A2∪A3∪...∪An
=Ak∪A(k+1)∪A(k+2)∪...∪An∪A1∪A2∪...∪A(k-1), 其中 k=1, 2, ..., n
=Ak∪A(k+1)∪A(k+2)∪...∪An∪A1∪A2∪...∪A(k-1)∪Ak
=(Ak-A(k+1))∪A(k+1)∪A(k+2)∪...∪An∪A1∪A2∪...∪A(k-1)∪Ak (性質(1))
=(Ak-A(k+1))∪(A(k+1)-A(k+2))∪A(k+2)∪...∪An∪A1∪A2∪...∪A(k-1)∪Ak
=...
=(Ak-A(k+1))∪(A(k+1)-A(k+2))∪...∪(An-A1)∪(A1-A2)∪...∪(A(k-1)-Ak)∪Ak
=(A1-A2)∪...∪(A(k-1)-Ak)∪(Ak-A(k+1))∪(A(k+1)-A(k+2))∪...∪(An-A1)∪Ak

∩(k=1→n)[(A1∪A2∪A3∪...∪An)]
=∩(k=1→n)[(A1-A2)∪...∪(An-A1)∪Ak]
=(A1-A2)∪...∪(An-A1)∪[∩(k=1→n)Ak] (性質(2))

∴(A1∪A2∪A3∪...∪An)=(A1-A2)∪...∪(An-A1)∪[∩(k=1→n)Ak]



(A1 - A2) ∪( A2 - A3 ).∪...∪(An - A1) = ( A1∪A2...∪An ) - (A1∩A2∩...∩An).
是正確的。可以獨立証明,亦可以利用上面結果。

現利用上面結果証明
(A1 - A2) ∪( A2 - A3 )∪...∪(An - A1) = (A1∪A2...∪An ) - (A1∩A2∩...∩An).

將要利用以下性質:
(3) (A∪B)-C=(A-C)∪(B-C)
(4) 若C⊂B, 則 (A-B)-C=A-B


已証 (A1∪A2∪A3∪...∪An)=(A1-A2)∪...∪(An-A1)∪(A1∩A2∩...∩An)
兩邊減(A1∩A2∩...∩An)
∴(A1∪A2∪A3∪...∪An)- (A1∩A2∩...∩An)
=[(A1-A2)∪...∪(An-A1)]-(A1∩A2∩...∩An)
=[(A1-A2)- (A1∩A2∩...∩An)]∪...∪[(An-A1)-(A1∩A2∩...∩An)]∪[(A1∩A2∩...∩An)
- (A1∩A2∩...∩An)] (性質(3))
=[(A1-A2)]∪...∪[(An-A1)]∪ø (性質(4))
=[(A1-A2)]∪...∪[(An-A1)]
2012-08-05 11:36 pm
哇, 超感謝!
不過我想補充問一下, 我想的能再收歛一下, 變成更準確更小的等式嗎?

2012-08-05 15:49:49 補充:
另外, 性質2 可否証明一下? 這個雖然相當顯然易見...

2012-08-05 23:28:48 補充:
性質2 真的怪怪的...


收錄日期: 2021-04-16 14:45:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120801000051KK00444

檢視 Wayback Machine 備份