✔ 最佳答案
1)
∠CAB = (1/2)∠COB (∠at centre twice ∠ at ☉ce)
Let M be the mid point of BC , then OM ⊥ BC and EM ⊥ BC since EM is the height of isos.△ BEC , so EOM is a straight line
So ∠BOM = (1/2)∠COB =∠CAB ,
therefore A,E ,O AND B ARE CONCYCLIC. (ext.∠= int. opp.∠)
2)
∠EBC =∠ECB = 90° - ∠OEB = 90 - 56 = 34°
so∠AEB = ∠EBC + ∠ECB = 34° + 34°= 68° (ext. ∠ of Δ)∠ODC
= (180° - ∠DOC)/2
= (180° - 2∠EBC )/2 (∠at centre twice ∠ at ☉ce)
= (180° - 2*34° )/2
= 56°