Difficult Math Induction

2012-07-29 3:31 am
Prove by Math induction that for any positive integer n,
(7n+1)6^n + (-1)^(n+1)
is divisible by 49.
Thanks
Simon YAU

回答 (2)

2012-07-29 4:55 am
✔ 最佳答案
As follows:

圖片參考:http://i923.photobucket.com/albums/ad74/w_khs/Document1.jpg
2012-07-29 5:21 am
唔做代n=1個step....

(7k+1)6^k + (-1)^(k+1)=49M

(7k+1+7)6^(k+1) + (-1)^(k+1+1)

【(7k+1+7)6^k 】(6) + (-1)【49M- (7k+1)6^k】

【(7k+1+7)6^k 】(6) - 49M + (7k+1)6^k

6^k【42k+48+7k+1】 - 49M

6^k(49k+49) -49M

49【6^k(k+1) -M 】

so,P(n+1) is also true

by MI, it is true for any positive integer n
參考: me


收錄日期: 2021-04-13 18:52:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120728000051KK00561

檢視 Wayback Machine 備份