Complex Number

2012-07-15 4:02 pm
Give 2 complex numbers, which are not conjugate or multiple of conjugate, such that their product is real.

回答 (3)

2012-07-15 8:06 pm
✔ 最佳答案
Let z₁, z₂be two complex numbers with non-zero imainary parts such that z₁z₂= r where r is real.
Then z₁=r/z₂
⇒z₁=r/z₂× conjugate(z₂)/conjugate(z₂)
⇒z₁=r/[z₂× conjugate(z₂)]×conjugate(z₂)
⇒z₁=(r/|z₂|²)×conjugate(z₂)
As r/|z₂|² is real, ∴ z₁is a real multiple of conjugate of z₂

Thus the required 2 complex numbers do not exist.

2012-07-15 12:17:56 補充:
2i=-2(-i)=-2×(conjugate(i)).
We may conclude 2i is a multiple of conjugate of i.
2012-07-17 1:02 am
一樓的答案錯,因為ri=(-r)(-i)=(-r)conjugate(i),不附合題目。

二樓對,但難明,我提出另一個解釋。

設兩個complex numbers,一個叫z₁=(a+bi),一個叫z₂=(c+di)。
(a+bi)(c+di)=(ac-bd)+(ad+bc)i
⇒ad+bc=0
⇒ad=-bc
⇒a/b=-c/d
所以z₁、z₂是倍數關係,並是conjugate。

所以題目是無解。
參考: me
2012-07-15 5:27 pm
i and 2i
i x 2i = -2 which is real
i and 2i are not conjugate or multiple of conjugate of each other.


收錄日期: 2021-04-13 18:49:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120715000051KK00096

檢視 Wayback Machine 備份