✔ 最佳答案
Let t be any real number.
Then (at+x)²+(bt+y)²+(ct+z)²>=0
(a²t²+2axt+x²)+(b²t²+2byt+y²)+(c²t²+2czt+z²)>=0
(a²+b²+c²)t²+2(ax+by+cz)t+(x²+y²+z²)>=0
The quadratic inequality is non-negative for all real numbers t
⇒[2(ax + by + cz)]²-4 (a² + b² + c²)(x² + y² + z²)≤0
⇒(ax + by + cz)² ≤ (a² + b² + c²)(x² + y² + z²)