prove of orthogonal matrix

2012-07-04 7:48 am
The matrix is orthogonal if QQT=I (T=transpose)

Given ATA=BTB (T=transpose)
show that there exist an orthogonal matrix Q such that A=QB
?????

回答 (2)

2012-07-05 12:43 am
✔ 最佳答案
Are the any other properties on A or B?
Are they invertible? Are the diagonalizable?

2012-07-04 16:43:22 補充:
If A^{-1} exists, then

A = A^{-T}A^{T}A = A^{-T}B^{T}B

Let Q = A^{-T}B^{T}, now QQ^{T} =

A^{-T}B^{T}(A^{-T}B^{T})^{T}
= A^{-T}B^{T}BA^{-1}
= A^{-T}A^{T}AA^{-1}
= I

Therefore Q is orthogonal.
2012-07-04 5:48 pm
A and B is non singular matrix


收錄日期: 2021-04-23 18:31:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120703000051KK00744

檢視 Wayback Machine 備份