送分題-拆立方根

2012-06-23 7:03 am
已知(√27+√28)^1/3+(√27-√28)^1/3=√3
求(√27+√28)^1/3-(√27-√28)^1/3

http://www2.hkedcity.net/citizen_files/aa/tg/ki4331/myresources/201101/470866/mtbcr.htm

回答 (3)

2012-06-23 4:42 pm
✔ 最佳答案
已知(√27+√28)^1/3+(√27-√28)^1/3=√3
求(√27+√28)^1/3-(√27-√28)^1/3
Sol
設 A=(√27+√28)^1/3,B=(√27-√28)^1/3
A+B=√3
AB=[(√27+√28)(√27-√28)]^1/3=-1
A^3-B^3=4√7
再設 A-B=P>0
P^3=A^3-3A^2B+3AB^2-B^3
=(A^3-B^3)-3AB(A-B)
=4√7+3P
P^3-3P-4√7=0
(P^2-P√7+4)(P-√7)=0
P^2-P√7+4,D=7-4*1*4<0
So P^2-P√7+4>0
So
P-√7=0
P=√7


2012-06-24 2:29 am
001,你抄漏咗個4

[(√27 + √28)^(1/3) - (√27 - √28)^(1/3)]²

= 3 - "4"[(√27 + √28)(√27 - √28)]^(1/3)
2012-06-23 7:13 am
(√27 + √28)^(1/3) + (√27 - √28)^(1/3) = √3 [(√27 + √28)^(1/3) + (√27 - √28)^(1/3)]² = (√3)² (√27 + √28)^(2/3) + 2[(√27 + √28)^(1/3)][(√27 - √28)^(1/3)]+ (√27 - √28)^(2/3) = 3 (√27 + √28)^(2/3) - 2[(√27 + √28)^(1/3)][(√27 - √28)^(1/3)]+ (√27 - √28)^(2/3) = 3 - 4[(√27 + √28)^(1/3)][(√27 - √28)^(1/3)] [(√27 + √28)^(1/3) - (√27 - √28)^(1/3)]²= 3 - [(√27 + √28)(√27 - √28)]^(1/3)= 3 - (27 -28)^(1/3)= 3 - (-1)^(1/3)= 3 - (-1) (complex root rej.)= 4 (√27 + √28)^(1/3) - (√27 - √28)^(1/3) = 2 I HOPE THIS CAN HELP YOU! ^_^

2012-06-24 20:50:46 補充:
Too Careless :(
參考: My Maths World


收錄日期: 2021-04-13 18:45:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120622000051KK00728

檢視 Wayback Machine 備份