✔ 最佳答案
By first principle:
d(tan-1 x)/dx = lim (h → 0) [tan-1 (x + h) - tan-1 x]/h
Let θ = tan-1 (x + h) - tan-1 x, then
tan θ = [(x + h) - x]/[1 + (x + h)x] = h/[1 + x(x + h)]
θ = tan-1 {h/[1 + x(x + h)]}
Hence
d(tan-1 x)/dx = lim (h → 0) tan-1 {h/[1 + x(x + h)]}/h
= lim (h → 0) {{1/[1 + x(x + h)]} tan-1 {h/[1 + x(x + h)]}/{h/[1 + x(x + h)]}}
= lim (h → 0) 1/[1 + x(x + h)] lim (h → 0) tan-1 {h/[1 + x(x + h)]}/{h/[1 + x(x + h)]}
= 1/(1 + x2) lim (h → 0) tan-1 {h/[1 + x(x + h)]}/{h/[1 + x(x + h)]}
Sub u = tan-1 {h/[1 + x(x + h)]}, then u → 0 as h → 0
lim (h → 0) tan-1 {h/[1 + x(x + h)]}/{h/[1 + x(x + h)]} = lim (h → 0) u/tan u
= lim (h → 0) (u cos u/sin u)
= 1
Finally d(tan-1 x)/dx = 1/(1 + x2)
2012-06-22 16:27:40 補充:
Or can refer to the pic below:
http://i1191.photobucket.com/albums/z467/robert1973/Jun12/Crazydiff3.jpg