vector in 2d dimensional space

2012-06-19 5:39 am
1.vp,vq,vr and vs are four vectors such that vp.vq=5, vp.vr=-4 and vs=k(vq)+vr
if vs and vp are orthogonal, find the value of k
ans:4/5

2. given that va and vb are 2 non-zero vectors. if va-vb is perpendicular to 2(va)+vb and 8(va)-5(vb) is perpendicular to va+vb, find |va|: |vb|
ans: 2: sq. root 7

回答 (1)

2012-06-19 8:59 am
✔ 最佳答案
1)vs = k vq + vrvs * vp = k vq * vp + vr * vp0 = 5k - 4 ...... vs and vp are orthogonal so vs * vp = 0k = 4/5

2)va - vb is perpendicular to 2va + vb :
(va - vb) (2va + vb) = 0
2(va)² - va * vb - (vb)² = 0 ... (1)
8va - 5vb is perpendicular to va + vb :
(8va - 5vb) (va + vb) = 0
8(va)² + 3va * vb - 5(vb)² = 0 ... (2)
(1) * 3 + (2) :

14(va)² - 8(vb)² = 0
(va)² : (vb)² = 4 : 7
|va|² cos0 : |vb|² cos0 = 4 : 7
|va| : |vb| = 2 : √7


收錄日期: 2021-04-21 22:25:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120618000051KK00627

檢視 Wayback Machine 備份