Polynomials:::::

2012-06-10 8:44 pm
Let a[1],a[2],...a[n] be the roots of the equation x^n -x +1=0 , where
n>=0 and a[i] ≠ 0 for all i
Evaluate ∑(r=1,n) [(a[r])^(n-1)]

[1] 表示下方的細1

回答 (1)

2012-06-10 9:37 pm
✔ 最佳答案

xⁿ - x + 1 = 0
xⁿ = x - 1
xⁿ⁻¹ = 1 - 1/x

∑ (r=1,n) arⁿ⁻¹= ∑ (r=1,n) 1 - 1/ar= n - ∑ (r=1,n) 1/ar= n - -(The coefficient of the term x / Product of roots)= n - -( -1 / 1 ) = n - 1


2012-06-10 13:55:00 補充:
n - -(The coefficient of the term x / Product of roots)

should be

n - -(The coefficient of the term x / The coefficient of the constant term)


收錄日期: 2021-04-21 22:25:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120610000051KK00183

檢視 Wayback Machine 備份