junior form maths

2012-06-06 12:24 am
1.http://imageshack.us/photo/my-images/444/rectangle.jpg/
ABCD is a rectangle,find the area of QDR
答案(好似,還不確定):9.6cm^2

2.http://imageshack.us/photo/my-images/801/87509824.jpg/
ABCD is a quadrilateral,DB=BC,find x

(PS沒漏information)
謝謝
更新1:

thx very much!

回答 (1)

2012-06-06 2:44 am
✔ 最佳答案

圖片參考:http://desmond.imageshack.us/Himg444/scaled.php?server=444&filename=rectangle.jpg&res=landing

1)

△QAP ~ △QCD (A.A.A.)
∴ PQ : DQ = 6 : 9
i.e. DQ : DP = 9 : (9+6) = 3 : 5

△QAR ~ △QCB (A.A.A.)
∴ AR : BC = AQ : QC = 6 : 9

So AR : AD = 6 : 9 since AD = BC ,
i.e. RD : AD = (9-6) : 9 = 1 : 3

△QDR
= △AQD * AR/AD
= (△APD * DQ/DP) * RD/AD
= 6*16/2 * 3/5 * 1/3
= 9.6 cm²




圖片參考:http://imgcld.yimg.com/8/n/HA04628698/o/701206050028213873410310.jpg


2)

設 E 為 D 至 AB 垂足 , o 為AC , BD 之交點 。
∠DBE = 180° - 15° - 30° - 90° = 45° = ∠BDE

∠DCA = 45 - 30 = 15° = ∠CAB
∠AoB =∠CoD(對頂角)
∴ △AoB ~ △CoD (A.A.)

設 BC = BD = 1 , 則
Do : oB = (1 - tan30°) : tan30° = (1 - √3/3) : √3/3 = √3 - 1


DC : AB = √3 - 1
√2 : AB = √3 - 1
AB = √2 / (√3 - 1)

AE = AB - BE = √2 / (√3 - 1) - √2/2

tan∠ADE = AE/DE = (√2 / (√3 - 1) - √2/2 ) / √2/2 = 2 / (√3 - 1) - 1 = √3
∴∠ADE = 60°

x =∠ADE + ∠EDB = 60 + 45 = 105°



2012-06-05 18:55:12 補充:
1)
△QDR
= △AQD * AR/AD

should be

△QDR
= △AQD * RD/AD

2012-06-05 19:55:58 補充:
You're welcome~


收錄日期: 2021-04-21 22:25:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120605000051KK00282

檢視 Wayback Machine 備份