證明√ 10 為無理數一般證法:(教科書寫既)

2012-05-30 1:41 am
Suppose that √10 is a rational number.
So, we have √10 = p/q , where p and q are relatively prime integers.
Hence, we have 10 = p²/q²
10q² = p²
Then, p² is divisible by 10 and hence p is divisible by 10
Therefore, p=10h for some integer h
Hence, we have 10q² = (10h)²
q² = 10h²
So, q² is divisible by 10 and hence q is divisible by 10
It leads to a contradiction since p and q are relatively prime.

Thus, we have √ 10 is an irrational number.

回答 (3)

2012-08-20 7:45 pm
兩數互質即該兩數除1外沒正整公因數。
2012-06-19 2:58 pm
To 001 意見:

你的第一個問題:1 與 2 互質,人家沒說 p/q 中的 p, q 都是質數,而是說 p, q 為互質。

你的第二個問題,是針對此句的吧:

So, q² is divisible by 10 and hence q is divisible by 10


上面明明是寫 10,沒有寫 9。你最多只能說,他沒有把證明寫很完整,上面句子可是沒有錯的。
2012-06-06 5:15 am
問題1,2=2/1,但1唔係質數

問題2,9除得盡9,3除不盡9

2012-06-23 09:09:47 補充:
問題1係我唔明互質嘅意思

在10除得盡10,√10除得盡"√10"中否定 "√10"是有理數而改成"10"

是否循環論證?


收錄日期: 2021-04-11 19:01:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120529000050KK00370

檢視 Wayback Machine 備份