A simple math.

2012-05-19 6:44 am
Given △ABC, BC=7, AC=5, AB=8, P is any point in theplane, find
1. the minimum of PA²+PB²+PC² and the corresponded value of PA.
2. the minimum of PA+PB+PC and the correspondedvalue of PA.

回答 (4)

2012-05-20 8:11 pm
(1) Here is a general fact.

Let G be the centroid. Then for any P,

(PA)^2 + (PB)^2 + (PC)^2 - 3(PG)^2 = {(GA)^2 + (GB)^2 + (GC)^2} = {(a)^2 + (b)^2 + (c)^2}/3, which is a constant.

Choose P = G, and we get the minimum of (PA)^2 + (PB)^2 + (PC)^2 to be {(a)^2 + (b)^2 + (c)^2}/3.

2012-05-20 12:13:06 補充:
(2) 是費馬點。有很多找尋此點的方式。
2012-05-20 1:30 am
No special purpose for A=60.
2012-05-19 9:31 pm
1)P 為重心

2)注意∠A = 60° , 所以 P 為外心

2012-05-19 13:51:00 補充:
2)又好像P不是外心~

2012-05-19 14:00:54 補充:
∠A = 60°用意何在??


收錄日期: 2021-04-21 22:25:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120518000051KK00600

檢視 Wayback Machine 備份