請問數學多題問題 急急急...

2012-05-18 6:39 am
1.k為實數,如果點P﹝3k+1分之k+1,k-2分2k+1﹞在第二象限內,下列何者正確? (A)-2分之1<3<-3分之1(B)-1<k<-2分之1 (C)-2分之1<k<2 (D)-1<k<2

2.若函數f(x)=5x2的平方+4x+1在x=a時有及小值b,則a+2b=
(A) -5分之1 (B) 0 (C) 5分之1 (D) 1

3.坐標平面上兩點P(1.3)和Q(2,5)的直線距離為何?
(A)根號3 (B)根號5 (C)3 (D)14

4設0<X<4分之π,若tanx+cotx=12分之25,則sinx-cosx的值為
(A)5分之7 (B)-5分之4 (C)-5分之1 (D)5分之1

5tanα=2,tanβ=3,則tan(α-β)=
(A)7分之1(B)-7分之1(C)6分之1(D)-6分之1

6設0小於等於θ 小於等於π,且2sin2的次方+11cosθ-7=0
,則θ= (A)6分之π (B)3分之π (C)3分之2π (D)4分之3π

7.在ΔABC,設LA、LB、LC之對應邊長分別為a、b、c,
若LB=120 ° ,a=5,c=3,則ΔABC的外接元面積為?
(A)根號3分之7π (B)根號3分之49π
(C)3分之7 π(D)3分之49π

8.設f(x)=2x^7-15x^5+52x^4-65x^3+18x+10,則f(1)+f(2)= (A)8 (B)28 (C)92 (D)136

9.多項式4X^4+4X^3+X^2+3除以2x-1的餘式為何? (A)3 (B)4 (C)5 (D)6

10若log底數2x+log底數y=1且x^2+y^2=117,則x+y=?
(A)11 (B)12 (C)121 (D)144

麻煩幫我解答 謝謝 ..

回答 (2)

2012-05-18 8:31 am
✔ 最佳答案
1.
答案是: (B) -1 < k < -1/2

在第二象限內,x 坐標為負值,y 坐標為正值。
(k + 1)/(3k + 1) < 0 及 (2k + 1)/(k - 2) > 0
-1 < k < -1/3 及 (k <-1/2 或 k > 2)
取重疊範圍: -1 < k< -1/2


2.
答案是: (B) 0

f(x) = 5x² + 4x + 1
f(x) = 5[x² + (4/5)x + (2/5)²] - 5(2/5)² + 1
f(x) = 5[x + (2/5)]² + (1/5)
f(x) 在 x = -2/5 時有最小值 1/5

a = -2/5, b = 1/5
a + 2b = (-2/5) + 2(1/5) = 0


3.
答案是: (B) √5

PQ = √[(1 - 2)² + (3 - 5)²] = √5


4.
答案是: (C) -1/5

tanx + cotx = 25/12
tanx + (1/tanx) = 25/12
(tan²x + 1)/tanx = 25/12
12tan²x - 25tanx + 12 = 0
(4tanx - 3)(3tanx - 4) = 0
tanx = 3/4 或 tanx = 4/3 (捨去,因 x > π/4,不合題意)

tanx = 3/4
sinx = 3/5 及 cosx =4/5
sinx - cosx = (3/5) - (4/5) = -1/5


5.
答案是: (B) -1/7

tan(α - β)
= (tanα - tanβ)/(1 + tanα*tanβ)
= (2 - 3)/(1 + 2*3)
= -1/7


6.
答案是: (B) π/3

2sin²θ + 11cosθ - 7 = 0
2(1 - cos²θ) + 11cosθ - 7 = 0
2 - 2cos²θ + 11cosθ - 7 = 0
2cos²θ - 11cosθ + 5 = 0
(2cosθ - 1)(cosθ - 5) = 0
cosθ =1/2 或 cosθ = 5 (捨去)
θ = π/3


7.
答案是: (D) 49π/3

b² = a² + c² - 2*a*c*cosB (餘弦定律)
b² = 5² + 3² - 2*5*3*cos120°
b = 7

b/sinB = 2R (正弦定律)
7/sin120° = 2R
外接圓半徑 R = 7/√3

外接圓面積 = πR² = π(7/√3)² = 49π/3


8.
答案是: (D) 136

f(1) = 2(1)^7 - 15(1)^5 + 52(1)^4 - 65(1)^3 + 18(1) + 10 = 2
f(2) = 2(2)^7 - 15(2)^5 + 52(2)^4 - 65(2)^3 + 18(2) + 10 = 134

f(1) + f(2) = 2 + 134 = 136


9.
答案是: (B) 4

餘式
= 4(1/2)^4 + 4(1/2)^3 + (1/2)^2 + 3
= 4


10.
答案是: (A) 11

log2x + log2y = 1
log2xy = 1
xy = 2 ...... [1]

x² + y² = 117 ...... [2]

[1]*2 + [2] :
x² + 2xy + y² = 121
(x + y)² = 121
x + y = 11 或 x + y = -11 (捨去)
參考: 賣女孩的火柴
2012-05-18 6:59 am
1.P(k+1/3k+1,2k+1/k-2)在第二象限內=> k+1/3k+1<0,且2k+1/k-2>0
=> (k+1)‧(3k+1)<0,且(2k+1)‧(k-2)>0
=> -1 < k < -1/3-----(1),且 k< -1/2 或k >2------(2)
=> -1 < k < -1/2-----(B)




2012-05-17 23:29:01 補充:
2.看不懂 f(x)= " 5x2的平方" +4x+1

2012-05-17 23:50:03 補充:
3.坐標平面上兩點P(1.3)和Q(2,5)距離
PQ = √(2-1)^2+(5-3)^2 = √(1)^2+(2)^2 = √(1+4) = √5-----(B)

2012-05-17 23:51:45 補充:
4. tanx+cotx=25/12 => sinx/cosx + cosx/sinx = 25/12
(sinx^2+ cosx^2)/sinxcosx = 25/12 => 1/sinxcosx = 25/12
sinx‧cosx = 12/25
(sinx-cosx)^2 = sinx^2 -2sinxcosx + cosx^2 = 1 - 2* 12/25 = 1 - 24/25 = 1/25
sinx-cosx = ± 1/5 => sinx-cosx = - 1/5 --------(C)
(∵0 < x < π/4, sinx < cosx )

2012-05-18 00:45:02 補充:
應該猜到了
2.f(x)=5x^2+4x+1 = 5(X^2 + 4/5 X + "4/25") + 1 - 4/5
=5 ( X+ 2/5)^2 + 1/5 ≧ 1/5
當X= -2/5 時, f(x)有最小值 1/5
所以 a+2b= (-2/5) + 2‧(1/5) = 0 -------(B)

2012-05-18 00:54:09 補充:
5. tanα=2,tanβ=3, => tanα‧tanβ =6
公式
tan(α-β)= ( tanα - tanβ) /(1 + tanα‧tanβ )/= (2-3)/( 1+6) = -1/7 --------(B)
夜深了,明天再繼續,點數真難賺~^_^


收錄日期: 2021-04-13 18:41:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120517000015KK09607

檢視 Wayback Machine 備份