定積分證明

2012-05-17 1:39 am
若函數ƒ(x)在[0,1]上連續可微,證明:
lim(n→∞) n∫(0~1) xⁿƒ(x) dx = ƒ(1)

回答 (2)

2012-05-17 2:29 am
✔ 最佳答案
∫(0~1) nx^nƒ(x) dx
=nf(1)/(n+1) -∫(0~1) n/(n+1)x^(n+1)ƒ'(x) dx (integration by parts)
=nf(1)/(n+1) - f'(k) ∫(0~1) n/(n+1) x^(n+1) dx (M.V.T. for definite integration for some k)
=nf(1)/(n+1) - f'(k) n/[(n+1)(n+2)]

so
lim(n→∞) n∫(0~1) xⁿƒ(x) dx
=lim(n→∞) nf(1)/(n+1) - lim(n→∞) f'(k) n/[(n+1)(n+2)]
=f(1)
2012-05-20 9:29 am
請注意 k depends on n, but it does not matter, since f' is bounded on [0, 1].


收錄日期: 2021-04-16 14:24:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120516000051KK00479

檢視 Wayback Machine 備份