MQ7 --- Factorization

2012-05-16 1:35 am
Difficulty: 25%Factorize x⁵ + x+ 1.

回答 (2)

2012-05-16 1:51 am
✔ 最佳答案
f(x)=x^5+x+1, w=(-1+√3 i)/2,
f(w)=w^2+w+1=0, so x^2+x+1 is a factor of f(x)
then
f(x)=(x^2+x+1)(x^3-x^2+1)

2012-05-15 18:15:32 補充:
(1) x^2+x+1=0, x=(-1+√3 i)/2, (-1-√3 i)/2 = w, w^2
(2) x^3-x^2+1=0, x=u+1/(9u), uw+w^2/(9u), uw^2+w/(9u) , u=[(-25+3√69)/54]^(1/3)
let them be a, b, c
so, x^5+x+1=(x-w)(x-w^2)(x-a)(x-b)(x-c)

2012-05-15 18:54:32 補充:
Sorry! Amended as follows:
(1) x^2+x+1=0, x=(-1+√3 i)/2, (-1-√3 i)/2 = w, w^2
(2) x^3-x^2+1=0, x=u+1/(9u)+1/3, uw+w^2/(9u)+ 1/3, uw^2+w/(9u)+ 1/3
let them be a, b, c, where u=[(-25+3√69)/54]^(1/3)
so, x^5+x+1=(x-w)(x-w^2)(x-a)(x-b)(x-c)
2012-05-16 3:00 am
x^5 + x + 1
= x^5 - x^2 + x^2 + x + 1
= x^2 (x^3 - 1) + (x^2 + x + 1)
= (x^2 + x + 1)[x^2 (x - 1) + 1]
= (x^2 + x + 1)(x^3 - x^2 + 1)


收錄日期: 2021-04-13 18:42:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120515000051KK00458

檢視 Wayback Machine 備份