Prove --- Modulus

2012-05-12 8:11 pm
Show that the following law of cancellation holds for congruence withrespect to a prime modulus:If ab ≡ acand a ≢ 0, then b ≡ c.

回答 (4)

2012-05-12 8:16 pm
✔ 最佳答案
ab ≡ ac (mod p)

=> ab - ac = np

=> a(b - c) = np

=> (b - c) = np/a

Since a ≢ 0 and a ∤ p, a should divide n or n/a = k where k is a constant

This means that b - c = kp and thus b ≡ c (mod p)
2012-05-13 1:33 am
a ≢ 0 (mod p) 表示 xa ≡ 1 (mod p) 恆有解 x。

ab ≡ ac (mod p)

兩邊左乘上 x 即得:b ≡ c (mod p)。

2012-05-12 17:38:27 補充:
欲證 003 意見中之第一行:

(a, p) = 1 可得 xa + yp = 1 for some integers x, y.〔由 Euclid algorithm 得出〕

取 (mod p) 即得 xa ≡ 1 (mod p)。
2012-05-12 8:57 pm
THX...............
2012-05-12 8:47 pm
' | ' means divisible
' ∤ ' means not divisible
(p,a) means H.C.F.


收錄日期: 2021-04-13 18:41:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120512000051KK00273

檢視 Wayback Machine 備份