divisible

2012-05-09 5:33 am
If 3.4 / 2 = 1.7 which is a terminating decimal (not recurring nor irrational), can we say that 3.4 is divisible by 2?

Thanks.
更新1:

Then can I say that: Divisibility refers to all dividend, divisor and quotient are integers, and remainder = 0 or, the dividend is a non-constant polynomial, and remainder = 0 ??? Thanks.

回答 (3)

2012-05-12 5:12 am
✔ 最佳答案

3.4 is NOT divisible by 2

Divisibility refers to the remainder is 0
For example, 14/7=2, remainder is 0, thus we can say 14 is divisible by 7
For example, (a^2 + 2ab + b^2)/(a+b) = (a+b), then (a^2 + 2ab + b^2) is divisible by (a+b)

The quotient should be an integral number.
2012-05-09 8:44 pm
這是一個整除性問題,不是一個可約性問題。
定義:若存在一個整數 n 使 p = 2n,則 p 可被 2 整除。
參考: knowledge
2012-05-09 7:07 am
可以,只要你說明你的 integral doman 是有理數,甚至是實數。不過,Q 作為 integral domain 沒法談質數,沒法談不可約性。

2012-05-09 22:28:11 補充:
任何 integral domain 都可以談 a 是否 divisible by b 的問題,不些是整數這個特別的 integral domain。例如 Z[i] = {a + bi: a 及 b 為整數} 也是一個 integral domain,在其內也可以談 divisibility。有理數集 Q 也是一個 integral domain, 也可以談 divisibility,但沒大多的意義,因為任何非零元素都是有以被另一非零元素 divided,什麼都對等於談起來沒意義。

所以,要有意義地談 divisibility,要看你的 integral domain。

2012-05-09 22:29:47 補充:
更正:上面第一行第二句是「不止」,不是「不些」。


收錄日期: 2021-04-28 14:21:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120508000051KK00750

檢視 Wayback Machine 備份