m2 trigo techniques

2012-05-09 1:45 am
Can you give me some techniques on doing m2 trigo questions? I've got a small list of techniques:
-making use of the identities (for proving questions)
-......= x (for proving questions)
x....= 2x
-divide the whole thing by something (for proving questions)
-1/cos²θ=tan²θ+1
-construct a triangle (to find the three sides of the triangle)
-A+B-A = B (for proving questions)
I really have to list it out as I am not able to do the questions intuitively...

Besides, how do you do proving questions on the topic product to sum formulae and sum to product formulae? I find it extremely hard to master.

I am desperate for help!!
Thanks a million!!!!!!!!!!!
更新1:

大家都誤會左 sorry我表達能力有問題 我意思係我做果陣要諗返上面果d 絕對唔會寫返出黎=.= 運用formula/identity我梗係知一定要=.= 所以先放左係個表到既第一點到= = 我覺得我遇到果d題目都係「比較煩」 好似呢題咁 it is given that sinB/sinA = cos(A+B). prove that tan(A+B)=2tanA 果陣岩岩學完老師叫我地做 我做左勁耐都做唔到 個方法其實勁簡單 將個sinB變做sin(A+B-A) 之後加四個steps搞掂 (model ans)

更新2:

我係yahoo知識+搵過 有另外三個唔同既方法 不過呢個最快 五個steps KO PS 我絕對唔係果d見到條題目停左係到唔郁果d人黎 我係想要d快d既方法做

更新3:

原來係兩個 http://hk.knowledge.yahoo.com/question/question?qid=7011052300741 http://hk.knowledge.yahoo.com/question/question?qid=7010020501155 你話上面個方法係咪快= =.. 我係想要呢d方法 唔係想你話我知"做多d就會好d!" 呢樣野係人都知

更新4:

"你地"..

回答 (3)

✔ 最佳答案

如果你次次做既時候都list晒d方法出黎,咁樣可能會仲慢架
我個人認為做prove既questions時,首先要留意下右邊
多數我地都由左邊做起,所以要留意右邊最後舊野會係點
然後個腦就會諗到左邊舊野大概要點做先變成右變
例如左邊本來全部都係加,咁右邊無啦啦全部都係乘
咁你就要諗下,應該係用sun to product formula等等,將佢地變晒做乘

另外,如果真係完全冇頭緒,特別係考試個陣,真係唔識點變
我建議你用右手邊做起,做到變成左手邊都一樣ok

至於你話techniques方面..
其實好多時都只係運用番我地學過既formula,例如sum to product等等
最麻煩既就係有時你唔知要變晒所有野定係只係變前面唔變後面咁..
呢d都係要你做過類似questions就會學識點「睇穿」

當然,都要留意番老師點做
老師有時係黑板到做,你可以留心睇下佢點轉d terms
有唔明更加要問老師

不過講到尾,其實最緊要都係熟悉formula/identity
proving基本上mostly都要運用formula/identity
2012-05-10 6:07 am
講真無technique...純粹靠做..
你將成課做1次..講緊所有題目
尤其係trigo,..d題目勁多變化
做晒之後你發覺d題目黎黎去去都係咁solve,就算佢問法唔同都好
反而differentiation..limit呢d做少少就夠..
2012-05-09 8:47 pm
其實我做咁耐都係不斷嘗試,大家讀過m2都會有同感。唯一秘訣就係累積經驗……
參考: experience


收錄日期: 2021-04-20 12:43:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120508000051KK00433

檢視 Wayback Machine 備份