12. 設 [x] 代表不超過 x 的最大整數,且 {x} = x −[x],例如 [1.1] = 1、{6.9} = 0.9 和 [5] =
5。若x是正數,且 2[x]{x}+ 4 = 3{x}+ 3x,求x所有可能值之和。
Let [x] denote the greatest integer not exceeding x and {x} = x −[x] . For example, [1.1] = 1,
{6.9} = 0.9 and [5] = 5. If x is a positive number such that 2[x]{x}+ 4 = 3{x}+ 3x , find the
sum of all possible values of x.16. 已知n 是正整數,它被7 除時餘3,被11 除時餘5,被13 除時餘6,被101 除時餘
50。求n的最小可能值。
Let n be a positive integer which leaves a remainder of 3 when divided by 7, a remainder of 5
when divided by 11, a remainder of 6 when divided by 13 and a remainder of 50 when divided
by 101. Find the smallest possible value of n.17. 設x、y、z 為正整數,其中 x < y < z 且 x + y + z =155。敏儀計算了x 和y 的最大公因
數、x 和z 的最大公因數及y 和z 的最大公因數,並發現這三個最大公因數當中,其中
一個等於另外兩個之積。求x所有可能值之和。
Let x, y, z be positive integers such that x < y < z and x + y + z =155 . Mandy computes the
H.C.F. of x and y, the H.C.F. of x and z as well as the H.C.F. of y and z. She finds that among
these three H.C.F.s, one is equal to the product of the other two. Find the sum of all possible
values of x.18. 一個袋子中共有100枚硬幣,其中每個都是二元、五元或十元硬幣。若這100個硬幣共
值n元,問n有多少個不同的可能值?
There are 100 coins in a bag, each of denomination 2 dollars, 5 dollars or 10 dollars. If the
total value of the 100 coins is n dollars, how many different possible values of n are there?