✔ 最佳答案
LHS
=cos(A+B)cosC - cosAcos(B+C)
=cos(A+B)cosC-sin(A+B)sinC+sin(A+B)sinC
-cosAcos(B+C)+sinAsin(B+C)-sinAsin(B+C)
=cos(A+B+C)+sin(A+B)sinC-cos(A+B+C)-sinAsin(B+C)
=sin(A+B)sinC-sinAsin(B+C)
=RHS
By putting A=0, B=pi/6 and C=pi/3, we can see that
cosAcos(B+C)-sinAsin(B+C) <> sin(A+B)sinC - sinAsin(B+C) .