✔ 最佳答案
Let the plane be x/a+y/b+z/c=1, then
(1) 1/a+2/b+3/c =1
(2) the indicated volume V=abc/6
f(a,b,c, u)=abc/6+u(1/a+2/b+3/c -1)
∂f/∂a = bc/6 - u/a² =0, u=a²bc/6
∂f/∂b =ac/6-2u/b²=0, u=ab²c/12
∂f/∂c = ab/6 -3u/c² =0, u=abc²/18
so, a/6=b/12=c/18, (a,b,c)=(t, 2t, 3t)
∂f/∂u = 1/a+2/b+3/c -1 =0, then
1/t+2/(2t)+3/(3t) =1, t= 3, (a, b, c)=(3, 6, 9), u=81, V=27
(method 2)
1/a+ 2/b+ 3/c =1
AP>=GP, then 1/27 >= 6/abc, so V=abc/6 >= 27 (minimum)
2012-05-04 14:29:40 補充:
(intercept form) If a plane passes (a,0,0), (0,b,0), (0,0,c) then the plane is
x/a+ y/b + z/c = 1