數學知識交流 - 代數式的最少及最大值 (1)

2012-05-03 8:33 pm
以下 x, y 為實數,求 x 的值使得 y 最大:

(1) y = -x^2 + x - 1
(2) y = -3x^2 + 6x - 7
(3) y = -4x^2 - 5x - 3
(4) y = -2x^2 + 3x + 5
(5) y = -7x^2 - x + 7

以下 x, y 為實數,求 x 的值使得 y 最少:

(1) y = 3x^2 + 5x + 2
(2) y = 2x^2 - 8x - 7
(3) y = x^2 + 6x - 4
(4) y = x^2 + (x-1)^2
(5) y = 5x^2 - 7x + 3



回答 (2)

2012-05-04 4:25 am
✔ 最佳答案
以下x, y為實數,求 x 的值使得 y 最大:
(1) y = -x² + x – 1
解:y = -x² + x – 1 = -(x² – x + 1) = -[(x² – x + 1/4) + 3/4] = -(x – 1/2)²–3/4
當x = 1/2時,y有最大值-3/4。
(2) y = -3x² + 6x – 7
解:y = -3x² + 6x – 7 = -3(x² – 2x + 7/3) = -3[(x² – 2x + 1) + 4/3] = -3(x – 1)² – 4
當x = 1時,y有最大值-4。
(3) y = -4x² – 5x – 3
解:y = -4x² – 5x – 3 = -4(x² + 5/4 x + 3/4) = -4[(x² + 5/4 x + 25/64) + 23/64] = -4(x + 5/8)² – 23/16
當x = -5/8時,y有最大值-23/16。
(4) y = -2x² + 3x + 5
解:y = -2x² + 3x + 5 = -2(x² – 3/2 x – 5/2) = -2[(x² – 3/2 x + 9/16) – 49/16] = -2(x – 3/4)² + 49/8當x = 3/4時,y有最大值49/8。
(5) y = -7x² – x + 7解:y = -7x² – x + 7 = -7(x² + 1/7 x – 1) = -7[(x² + 1/7 x + 1/196) – 197/196] = -7(x + 1/14)² + 197/28當x = -1/14時,y有最大值197/28。

以下x, y為實數,求 x 的值使得 y 最小:
(1) y = 3x² + 5x + 2解:y = 3x² + 5x + 2 = 3(x² + 5/3 x + 2/3) = 3[(x² + 5/3x + 25/36) – 1/36] = 3(x + 5/6)² – 1/12當x = -5/6時,y有最小值-1/12。
(2) y = 2x² - 8x – 7解:y = 2x² – 8x – 7 = 2(x² – 4x – 7/2) = 2[(x² – 4x + 4) – 15/2] = 2(x – 2)² – 15當x = 2時,y有最小值-15。
(3) y = x² + 6x² – 4解:y = x² + 6x – 4 = x² + 6x + 9 – 13 = (x + 3)² – 13當x = -3時,y有最小值-13。
(4) y = x² + (x – 1)²解:y = x² + (x – 1)² = 2x² – 2x + 1 = 2(x² – x + 1/2) = 2[(x² – x + 1/4) + 1/4] = 2(x – 1/2)² + 1/2當x = 1/2時,y有最小值1/2。
(5) y = 5x² – 7x + 3解:y = 5x² – 7x + 3 = 5(x² – 7/5 x + 3/5) = 5[(x² – 7/5 x + 49/100) + 11/100] = 5(x – 7/10)² + 11/20當x = 7/10時,y有最小值11/20。
2012-05-03 11:15 pm
Y最大:
1.X=1/2
2.X=1
3.X=-5/8
4.X=3/4
5.X=-1/14

Y最少:
1.X=-5/6
2.X=2
3.X=-3
4.X=1/2
5.X=7/10
.


收錄日期: 2021-04-13 18:40:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120503000051KK00198

檢視 Wayback Machine 備份