急! F4 Basic Trigonometry 13q1

2012-04-30 7:00 pm
請詳細步驟教我計以下幾條 :
(不要綱址回答)


圖片參考:http://imgcld.yimg.com/8/n/HA05788109/o/701204300018413873402060.jpg

回答 (1)

2012-04-30 7:17 pm
✔ 最佳答案
12a) (cos θ + 1)(cos θ - 1) = cos2 θ - 1 = - sin 2 θ

(sin θ + 1)(sin θ - 1) = sin2 θ - 1 = - cos2 θ

Hence

(cos θ + 1)(cos θ - 1)/[(sin θ + 1)(sin θ - 1)] = tan2 θ = 144/25

b) tan θ < 0, possible combinations are:

(i) sin θ = -12/13, cos θ = 5/13
(ii) sin θ = 12/13, cos θ = -5/13

For (i):

(cos θ + 1)(cos θ - 1)/[(sin θ + 1)(sin θ - 1)] = (5/13 + 1)(5/13 - 1)/[(-12/13 + 1)(-12/13 - 1)] = 144/25

For (ii):

(cos θ + 1)(cos θ - 1)/[(sin θ + 1)(sin θ - 1)] = (-5/13 + 1)(-5/13 - 1)/[(12/13 + 1)(12/13 - 1)] = 144/25

c) (a) is quicker.

20) sin2 10 + sin2 20 + sin2 30 + sin2 40 + sin2 50 + sin2 60 + sin2 70 + sin2 80

= sin2 10 + sin2 20 + sin2 30 + sin2 40 + cos2 40 + cos2 30 + cos2 20 + cos2 10

= 4

21) tan 100 tan 190 = tan (180 - 80) tan (180 + 10) = tan 80 tan 10 = (1/tan 10) tan 10 = 1

Similarly:

tan 110 tan 200 = 1

tan 120 tan 210 = 1

.
.
.

tan 170 tan 260 = 1

Hence hen sum is 8.
參考: 原創答案


收錄日期: 2021-04-13 18:40:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120430000051KK00184

檢視 Wayback Machine 備份