✔ 最佳答案
http://i1090.photobucket.com/albums/i376/Nelson_Yu/int-1689.jpg
圖片參考:
http://i1090.photobucket.com/albums/i376/Nelson_Yu/int-1689.jpg
2012-05-03 20:52:45 補充:
df/dx = (y+z)(z+u)(u+b)/yzu * (1 - ay/x^2) = 0=> x=sqrt(ay)
d^2f/dx^2 = (y+z)(z+u)(u+b)/yzu * (2ay/x^3) > 0 => minimum
2012-05-03 20:52:53 補充:
Alternativey (y+z)(z+u)(u+b)/yzu * (x+a)(x+y)/x
A = (x+a)(x+y)/x = x + (a+y) +ay/x = [sqrt(x) - sqrt(ay)/sqrt(x)]^2 + [sqrt(y) + sqrt(a)]^2
Holding y,z, and u constant min occurs when x = sqrt(qy)
Likewise for y,z and u to get the other 3 conditions
2012-05-03 20:53:49 補充:
typo: when x = sqrt(ay)
2012-05-04 14:45:24 補充:
I made a fundamental mistake in my original solution. I update my solution as:
http://i1090.photobucket.com/albums/i376/Nelson_Yu/int-358.jpg