✔ 最佳答案
考慮
( 2(n+1) C n+1 ) / 2²⁽ⁿ⁺¹⁾
---------------------------------
( 2n C n ) / 2²ⁿ
= (2n+2)! / ( (2n+2 - n-1)! (n+1)! )
----------------------------------------- * 1/4
(2n)! / ( (2n - n)! n! )
=(2n+2)! / ( (n+1)! (n+1)! )
----------------------------------------- * 1/4
(2n)! / ( n! n! )
=(2n+2)! / (2n!) * ( n! / (n+1)! )² * 1/4
= (2n+1) (2n+2) * 1 / (n+1)² * 1/4
= 2(2n+1) / (n+1) * 1/4
= (2n+1) / (2n+2)
故有 (100 C 50) / 2¹ºº
= (100 C 50) / 2²⁽⁵º⁾
= (2C1)/2² * (2*1+1)/(2*1+2) * (2*2+1)/(2*2+2) * ... * (2*49+1)/(2*49+2)
= (1/2) (3/4) (5/6) ... (97/98) (99/100)
令 M = (2/3) (4/5) (6/7) ... (98/99) (100/101)
則 (100 C 50) / 2¹ºº * M = 1/101
明顯 M > (100 C 50) / 2¹ºº , 故有
( (100 C 50) / 2¹ºº )² < 1/101 < 1/100
(100 C 50) / 2¹ºº < 0.1 得所欲證。