分式運算式難題

2012-04-20 7:37 pm
( 249又13/67 + 370又 14/25 ) / ( 62又 20/67 + 92又 16/25 )

已知答案是4 ,

但怎麼樣就是無法算出,

還請各位大大能解答,


謝謝!!

回答 (4)

2012-04-20 8:03 pm
✔ 最佳答案
原式

=[(16696/67)+(9264/25)]/[(4174/67)+(2316/25)]

=(417400+620688)/(104350+155172)

=1038088/259522

=4

2012-04-20 12:40:59 補充:
=(616+1+13/67+2+14/25)/(158+20/67+16/25)
=(616+80/67+64/25)/(158+20/67+16/25)
=4



知識長 應該筆誤
=(616+1+13/67+2+14/25)/(154+20/67+16/25)
=(616+80/67+64/25)/(154+20/67+16/25)

=4*(158+20/67+16/25)/(154+20/67+16/25)
=4

2012-04-20 12:43:51 補充:
更正倒數第二行
=4*(154+20/67+16/25)/(154+20/67+16/25)
=4
2012-04-20 8:23 pm
除非有特殊技巧,否則除了硬算,別無他法,會累壞人的.
( 249又13/67 + 370又 14/25 ) / ( 62又 20/67 + 92又 16/25 )
=( 16696/67+ 9264/25) / ( 4174/67+ 2316/25) 化成假分數
=((16696*25+9264*67)/67*25) / ((4174*25+2316*67)/67*25) 通分
=(16696*25+9264*67) / 4174*25+2316*67 同乘分母化簡
=1038088 / 259522 = 4 ANS 計算之



2012-04-20 8:15 pm
不好意思,請問最後一式:

=(616+80/67+64/25)/(158+20/67+16/25)

是如何消成答案4的,

我有點轉不過來,

謝謝!!

2012-04-20 12:44:58 補充:
感謝螞蟻雄兵知識長:

我搞懂了,真是數學奇才ㄚ,

謝謝, 感恩~~!!
2012-04-20 8:04 pm
( 249又13/67 + 370又 14/25 ) / ( 62又 20/67 + 92又 16/25 )
=(249+13/67+370+14/25)/(62+20/67+92+16/25)
=(619+13/67+14/25)/(154+20/67+16/25)
=(616+1+13/67+2+14/25)/(158+20/67+16/25)
=(616+80/67+64/25)/(158+20/67+16/25)
=4


收錄日期: 2021-04-30 16:47:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120420000016KK02447

檢視 Wayback Machine 備份