✔ 最佳答案
用配方法解以下方程:
1.
x² + 7x + 12 = 0
[x² + 7x + (7/2)²] - (7/2)² + 12 = 0
[x + (7/2)]² - (49/4) + 12 = 0
[x + (7/2)]² = 1/4
x + (7/2) = 1/2 或 x + (7/2)= -1/2
x = -3 或 x = -4
2.
2x² + 9x + 10 = 0
2[x² + (9/2)x] + 10 = 0
2[x² + (9/2)x + (9/4)²] - 2(9/4)² + 10 = 0
2[x + (9/4)]² - (81/8) + 10 = 0
2[x + (9/4)]² = 1/8
[x + (9/4)]² = 1/16
x + (9/4) = 1/4 或 x + (9/4)= -1/4
x = -2 或 x = -5/2
3.
4x² - 7x - 36 = 0
4[x² - (7/4)x] - 36 = 0
4[x² - (7/4)x + (7/8)²] - 4(7/8)² - 36 = 0
4[x - (7/8)]² - (49/16) - 36 = 0
4[x - (7/8)]² = 625/16
[x - (7/8)]² = 625/64
x - (7/8) = 25/8 或x - (7/8) = -25/8
x = 4 或 x = -9/4
3.
6x² - 7x - 5 = 0
6[x² - (7/6)x] - 5 = 0
6[x² - (7/6)x + (7/12)²] - 6(7/12)² - 5 = 0
6[x - (7/12)]² - (49/24) - 5 = 0
6[x - (7/12)]² = 169/24
[x - (7/12)]² = 169/144
x - (7/12) = 13/12 或x - (7/12) = -13/12
x = 5/3 或 x = -1/2
2012-04-15 20:19:43 補充:
To 點瞧:
我是用配方法解的。「配方」的意思是「配成完全平方」。