SIMPIFY

2012-04-15 4:49 am
simpify the following:



圖片參考:http://imgcld.yimg.com/8/n/HA00407912/o/701204140074813873394070.jpg



this first one is : 1 over a(a-b)(a-c)

回答 (1)

2012-04-15 8:39 am
✔ 最佳答案
SIMIPY 1/[a(a-b)(a-c)+1/[b(b-c)(b-a)+1/[c(c-a)(c-b)]
Sol
p=1/[a(a-b)(a-c)]+1/[b(b-c)(b-a)]+1/[c(c-a)(c-b)]
pabc(a-b)(b-c)(c-a)
=bc(c-b)+ac(a-c)+ab(b-a)
=bc^2-b^2c+a^2c-ac^2+ab^2-a^2b
=(bc^2-ac^2)-(b^2c-a^2c)+(ab^2-a^2b)
=c^2(b-a)-c(b^2-a^2)+ab(b-a)
=c^2(b-a)-c(b-a)(b+a)+ab(b-a)
=(b-a)(c^2-bc-ac+ab)
=(b-a)[c(c-b)-a(c-b)]
=(b-a)(c-a)(c-b)
=(a-b)(b-c)(c-a)
So
pabc=1
p=1/(abc)




收錄日期: 2021-04-13 18:38:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120414000051KK00748

檢視 Wayback Machine 備份