✔ 最佳答案
17ai) S1 = 1, S2 = 1 + 2 + 1 = 4, S3 = 1 + 2 + 3 + 2 + 1 = 9
b) Let P(n) be the statement Sn = n2, then P(1) is true according to (i).
Suppose that P(k) is true for some positive integer k, i.e.
1 + 2 + 3 + ... + k + (k - 1) + ... + 2 + 1 = k2
Now for P(k + 1), LHS is:
1 + 2 + 3 + ... + k + (k + 1) + k + (k - 1) + ... + 2 + 1
= k2 + (k + 1) + k
= k2 + 2k + 1
= (k + 1)2
Hence P(k + 1) is also true and P(n) is true for all positive integers n.
18a) 1 + 1/2 + ... + 1/2n-1
Let x = 1/2, then
1 + x + ... + xn-1 = (xn - 1)/(x - 1)
= (1/2n - 1)/(1/2 - 1)
= 2(1 - 1/2n)
So Sn = 2 - 2(1 - 1/2n) = 1/2n-1
b) Let P(n) be the statement Sn = 1/2n-1
When n = 1, S1 = 1, 1/2n-1 = 1
Hence P(1) is true.
Suppose that P(k) is true for some positive integer k, i.e.
Sk = 2 - (1 + 1/2 + ... + 1/2k-1) = 1/2k-1
Subtracting 1/2k on both sides:
2 - (1 + 1/2 + ... + 1/2k-1) = 1/2k-1 - 1/2k
= (1/2k)(2 - 1)
= 1/2k
Hence P(k + 1) is also true and P(n) is true for all positive integers n.
2012-04-17 08:58:19 補充:
Consider
(x - 1)(1 + x + ... + xn-1) = (x - 1) + (x2 - x) + (x3 - x2) + ... + (xn - xn-1)
= xn - 1
Hence
(1 + x + ... + xn-1) = (xn - 1)/(x - 1)