✔ 最佳答案
15a) Let P(n) be the statement 12 x 4 + 22 x 5 + ... + n2 (n + 3) = n(n + 1)(n2 + 5n + 2)/4
When n = 1, LHS = 4 and RHS = (1/4) x 2 x (12 + 5 + 2) = 4
So P(1) is true.
Suppose that P(k) is true for some positive integer k, i.e.
12 x 4 + 22 x 5 + ... + k2 (k + 3) = k(k + 1)(k2 + 5k + 2)/4
Adding (k + 1)2 (k + 4) to both sides:
12 x 4 + 22 x 5 + ... + (k + 1)2 (k + 4) = k(k + 1)(k2 + 5k + 2)/4 + (k + 1)2 (k + 4)
= [(k + 1)/4][k(k2 + 5k + 2) + 4(k + 1)(k + 4)]
= [(k + 1)/4] (k3 + 9k2 + 22k + 16)
= [(k + 1)/4] (k + 2)(k2 + 7k + 8)
= (k + 1)(k + 2)[(k + 1)2 + 5(k + 1) + 2]/4
Hence P(k + 1) is also true and then P(n) is true for all positive integers n.
b) 12 x 2 + 22 x 3 + ... + n2 (n + 1) = [12 x 4 + 22 x 5 + ... + n2 (n + 3)] - 2(12 + 22 + ... + n2)
= n(n + 1)(n2 + 5n + 2)/4 - n(n + 1)(2n + 1)/3
= (1/12)n(n + 1)[3(n2 + 5n + 2) + 4(2n + 1)]
= (1/12)n(n + 1)(3n2 + 23n + 10)
16a) Let P(n) be the statement 13 + 23 + ... + n3 = n2 (n + 1)2/4
When n = 1, LHS = 1 and RHS = (1/4) x 1 x 22 = 1
So P(1) is true.
Assume that P(k) is true for some positive integer k, i.e.
13 + 23 + ... + k3 = k2 (k + 1)2/4
Adding (k + 1)3 to both sides:
13 + 23 + ... + (k + 1)3 = k2 (k + 1)2/4 + (k + 1)3
= [(k + 1)2/4] [k2 + 4(k + 1)]
= (k + 1)2(k + 2)2/4
Hence P(k + 1) is also true and then P(n) is true for all positive integers n.
b) (13 - 1) + (23 - 2) + ... + (n3 - n)
= n2 (n + 1)2/4 - n(n + 1)/2
= [n(n + 1)/4] [n(n + 1) - 2]
= [n(n + 1)/4] (n2 + n - 2)
= n(n -- 2)(n + 1)2/4