✔ 最佳答案
i)a2 / a1 = a3 / a2
cos x / sin x = tan x / cos x
cos x / sin x = (sin x / cos x) / cos x
sin² x = cos³ x ..................................... (1)
1 - cos² x = cos³ x
cos² x (cos x + 1) = 1
cos x + 1 = 1 / cos² x ...........................(2)Common ratio = cos x / sin x , then ap = a1 * (cosx / sinx)ᵖ⁻¹ ,
i.e.
sin x * (cos x / sin x)ᵖ⁻¹ = cos x + 1
sin x * (cos x / sin x)ᵖ⁻¹ = 1 / cos² x .... [By (2)]
(sin x)²⁻ᵖ = (cos x)-ᵖ⁻¹
(2 - p) : (- p - 1) = 2 : 3 ..................... [By (1)]
p = 8
ii)By i) , cos³ x + cos² x - 1 = 0 Let (y - 1/3) be cos x , then
(y - 1/3)³ + (y - 1/3)² - 1 = 0
y³ - 3(1/3)y² + 3(1/9)y - 1/27 + y² - (2/3)y + 1/9 - 1 = 0
y³ - (1/3)y - 25/27 = 0(a + b)³ = a³ + b³ + 3ab(a + b) , let a + b be y , then y³ - (3ab)y - (a³ + b³) = 0Comparing coefficients :3ab = 1/3 ..............(3)
{
a³ + b³ = 25/27 .....(4)By (3) , b = 1/(9a) , sub. into (4) ,a³ + 1/(729a³) = 25/27
729(a³)² - 675a³ + 1 = 0
a³ = (25 ± 3√69) / 54
then
b³ = (25/27 - (25 ± 3√69) / 54) = (25 干 3√69) / 54Therefore y = a + b = ∛((25 ± 3√69) / 54) + ∛((25 干 3√69) / 54)
i.e.
y = ∛((25 + 3√69) / 54) + ∛((25 - 3√69) / 54) = 1.088211cos x = 1.088211 - 1/3 = 0.754877667arccos x = 0.71533 x = 2kπ ± arccos x = 2kπ ± 0.71533 , (k ∈ Z)