M2 Mathematical Induction

2012-04-10 11:27 pm
Pls. 求幫幫忙
因小弟點數已不多,一次問2題, 希望不要見怪

Prove, by mathematical induction, that for all position integers n,

圖片參考:http://imgcld.yimg.com/8/n/HA00714275/o/701204100057613873391820.jpg

回答 (2)

2012-04-11 12:03 am
✔ 最佳答案
12.
When n=1
L.H.S.=1
R.H.S.=1(2)(3)/6=1=L.H.S.
Assume k(1)+(k-1)(2)+(k-2)(3)+...+3(k-2)+2(k-1)+1(k)=k(k+1)(k+2)/6
When n=k+1
L.H.S.=(k+1)(1)+(k)(2)+(k-1)(3)+...+3(k-1)+2(k)+1(k+1)
=k(k+1)(k+2)/6+1+2+3+...+k+1
=k(k+1)(k+2)/6+(k+1)(k+2)/2
=(k+1)(k+2)(k+3)/6=R.H.S.
13.
When n=1
L.H.S.=1(2)=2
R.H.S.=1(1)(2)=2=L.H.S.
Assume 1(2)-2(4)+3(6)-4(8)+...+[(-1)^(k-1)](k)(2k)=[(-1)^(k-1)](k)(k+1)
When n=k+1
L.H.S.=1(2)-2(4)+3(6)-4(8)+...+[(-1)^(k-1)](k)(2k)+[(-1)^k](k+1)(2k+2)
=[(-1)^(k-1)](k)(k+1)+[(-1)^k](k+1)(2k+2)
=-[(-1)^k](k)(k+1)+[(-1)^k](k+1)(2k+2)
=[(-1)^k](k+1)[-k+2k+2]
=[(-1)^k](k+1)(k+2)=R.H.S.

2012-04-11 15:42:08 補充:
(k+1)(1)+(k)(2)+(k-1)(3)+...+3(k-1)+2(k)+1(k+1)
=k(1)+1+(k-1)(2)+2+(k-2)(3)+3+...+2(k-1)+(k-1)+(k)+k+(k+1)
=k(1)+(k-1)(2)+(k-2)(3)+...+3(k-2)+2(k-1)+1(k)+1+2+3+...+k+1
=k(k+1)(k+2)/6+1+2+3+...+k+1
2012-04-11 11:33 pm
im not clever enough, could show more steps pls.

L.H.S.=(k+1)(1)+(k)(2)+(k-1)(3)+...+3(k-1)+2(k)+1(k+1)
? step
?step
=k(k+1)(k+2)/6+1+2+3+...+k+1


收錄日期: 2021-04-16 15:26:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120410000051KK00576

檢視 Wayback Machine 備份