M2 Mathematical Induction

2012-04-06 10:41 pm
Pls.求救幫幫忙牙

圖片參考:http://imgcld.yimg.com/8/n/HA00714275/o/701204060040913873389700.jpg

deduce the formula for evaluating 1^2+2^2+3^2+‧‧‧+n^2

回答 (1)

2012-04-07 2:10 am
✔ 最佳答案
Use binomial theorem ,
(i+1)^3 = i^3 + 3i^2 + 3i + 1
(i+1)^3 - i^3 = 3 i^2 + 3 i + 1 ...(1)
Denote 1+2+...+n by U , 1^2 + 2^2 + ... + n^2 = V .
Our goal is find V .
taking summation on both sides on (1) , sum from 0 to n .
We have
(n+1)^3 - 1 = 3 V + 3 U + n
By given , U = 0.5n(n+1) ,
So ,
3V = (n+1)^3 - 1 - 3(0.5n)(n+1) - n
6V
= 2(n+1)^3 - 2(n+1) - 3n(n+1)
= (n+1) [ 2(n+1)^2 - 2 - 3n ]
= (n+1)( 2n^2 + 4n + 2 - 2 - 3n )
= n(n+1)(2n+1)
Thus , V = n(n+1)(2n+1) / 6


收錄日期: 2021-04-16 15:24:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120406000051KK00409

檢視 Wayback Machine 備份