中四m2遇上難道,求解答!!!!!~

2012-03-23 2:30 am
Prove that
cos^2 x - cos^2 y = sin^2 (x-y) - 2sinx cosy sin(x-y)

回答 (2)

2012-03-23 4:30 am
✔ 最佳答案
RHS
= sin^2 (x - y) - 2sinx cosy sin(x - y)
= sin(x - y)*[sin(x - y) - 2sinx cosy]
= (sinx cosy - cosx siny)*(sinx cosy - cosx siny - 2sinx cosy)
= -(sinx cosy - cosx siny)*(sinx cosy + cosx siny)
= cos^2 x sin^2 y - sin^2 x cos^2 y
= cos^2 x*(1 - cos^2 y) - (1 - cos^2 x)*cos^2 y
= cos^2 x - cos^2 x cos^2 y - cos^2 y + cos^2 x cos^2 y
= cos^2 x - cos^2 y
= LHS
2012-03-23 3:07 am
參考: I Hope This Can Help You ! ^_^ ( From Me )


收錄日期: 2021-04-13 18:35:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120322000051KK00555

檢視 Wayback Machine 備份