矩陣方程化簡

2012-03-20 9:54 am
Simlify the following matrix expressions.
(A - B)(A + B) - (A + B)^2 = -2AB - 2B^2

麻煩列出詳細過程,我想知道哪裡算錯.
更新1:

我答案似乎打錯,書本答案: -2BA - 2B^2

更新2:

感謝Mr.Wu (A + B)^2=A^2 + AB +BA +B^2 而非A^2 + 2AB +B^2 !!

回答 (5)

2012-03-20 4:46 pm
✔ 最佳答案
矩陣方程化簡
Simlify the following matrix expressions.
(A-B)(A+B)-(A+B)^2=-2BA-2B^2
Sol
(A-B)(A+B)-(A+B)^2
=(A-B)(A+B)-[(A+B)^2]
=A^2+AB-BA-B^2-(A^2+AB+BA+B^2)
=A^2+AB-BA-B^2-A^2-AB-BA-B^2
=(A^2-A^2)+(AB-AB)-(BA+BA)-(B^2+B^2)
=-2BA-2B^2


2012-03-20 5:00 pm
矩陣是可以用分配法的,所以 (A - B)(A + B) - (A + B)^2 = (A - B - A - B)(A + B) = -2B(A + B) = -2BA - 2B^2
2012-03-20 3:40 pm
矩陣方程化簡Simlify the following matrix expressions.
(A - B)(A + B) - (A + B)^2 = -2AB - 2B^2

=A*A+A*B-B*A-*B*B-(A+B)*(A+B)
=(A^2+A*B-B*A-B^2)-A*A-A*B-B*A-B*B
=(A^2+A*B-B*A-B^2)-A^2-A*B-B*A-B^2
=-B*A-B^2-BA-B^2
=-(B*B+B^2)

注意:

1.矩陣的交換律不成立

2.矩陣的結合律也不成立


2012-03-20 10:13 am
A乘B

B乘A
是否有差別
2012-03-20 10:00 am
是我學藝不精還是...?
我試算了幾次答案都是-2AB - 2B^2


[A^2+AB-BA-B^2]-[A^2+AB+BA+B^2]
= -2AB-2B^2


收錄日期: 2021-04-30 16:32:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120320000016KK00611

檢視 Wayback Machine 備份