解下列方程

2012-03-19 4:45 am
解下列方程,其中 0'<x<360'

1. 2sin2x=-開方3
2. 3tan(x-15')+開方6=0
3. sin^2 x-開方3sinx=0
4. 3tan^2 x-tanx-4=0

回答 (2)

2012-03-19 5:46 am
✔ 最佳答案
1.
0° ≤ x ≤ 360°
0° ≤ 2x ≤ 720°

2sin2x = -√3
sin2x = -(√3)/2
2x = (180 + 60)°, (360 - 60)°, (540 + 60)°, (720 - 60)°
x = 120°, 150°, 300°, 330°


=====
2.
0° ≤ x ≤ 360°
-15°≤ x - 15°≤ 345°

3tan(x - 15°) + √6 = 0
3tan(x - 15°) = -√6
tan(x - 15°) = -(√6)/3
(x - 15°) = (180 - 39.23)°, (360 - 39.23)°
x = 155.77°, 335.77


=====
3.
sin²x - (√3)sinx = 0
sinx(sinx - √3) = 0
sinx = 0 或 sinx = √3 (捨去)
sinx = 0°, 360°

(若題目真的是 0° < X < 360°,則此題無解。)


=====
4.
3tan²x - tanx - 4 = 0
(3tanx - 4)(tanx + 1) = 0
tanx = 4/3, -1
x = 53.13°, (180 + 53.13)°, (180 - 45)°, (360 - 45)°
x = 53.13°, 233.13°, 135°, 315°

2012-03-19 02:52:22 補充:
5.
sin²x - 3cosx + 3 = 0
(1 - cos²x) - 3cosx + 3 = 0
-cos²x - 3cosx + 4 = 0
cos²x + 3cosx - 4 = 0
(cosx - 1)(cosx + 4) = 0

若 0° ≤ x ≤ 360°
則cosx = 1 或 cosx = -4(捨去)
x = 0°, 360° ...... (答案)

若 0° < x < 360°
則cosx = 1(捨去) 或 cosx = -4(捨去)
故此題無解。 ...... (答案)
參考: micatkie, micatkie
2012-03-19 4:58 am
不好意思,SIN,COS,等等的完全不會。


收錄日期: 2021-04-13 18:34:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120318000051KK00794

檢視 Wayback Machine 備份